いゆ|"

North Yorkshire County Council and Selby District Council

SELBY DISTRICT TRAFFIC MODEL Local Model Validation Report

North Yorkshire County Council and Selby District Council

SELBY DISTRICT TRAFFIC MODEL
 Local Model Validation Report

TYPE OF DOCUMENT (VERSION) PUBLIC

PROJECT NO. 70081319
OUR REF. NO. LMVR (HIGHWAY)

DATE: JANUARY 2024

WSP

WSP.com

QUALITY CONTROL

Issue/revision	First issue	Revision 1	Revision 2	Revision 3
Remarks	Draft - internal review	Final draft - release		
Date	Sam Callaghan	Sam Callaghan		
Prepared by	Narendra Sadhale	Narendra Sadhale		
Signature	SC			
Checked by	Paul Smith	Paul Smith		
Signature	NSS			
Authorised by	T0081319	PAS		
Signature	LMVR (Highway)	LMVR (Highway)		
Project number	V1			
Report number	V2			

CONTENTS

1 INTRODUCTION 10
1.1 BACKGROUND 10
1.2 PURPOSE OF THIS REPORT 10
2 BASE MODEL SPECIFICATION 12
2.1 OVERALL MODEL STRUCTURE 12
2.2 MODEL SOFTWARE PLATFORM 12
2.3 MODEL COVERAGE 13
2.4 BASE YEAR 14
2.5 MODEL TIME PERIODS 14
2.6 MODEL ASSIGNMENT USER CLASSES 15
2.7 MODEL VERSION 15
3 SUMMARY OF MODEL DATA COLLECTION 16
3.1 INTRODUCTION 16
3.2 TRAVEL DEMAND DATA - MOBILE NETWORK DATA 16
3.3 TRAVEL DEMAND DATA - TFN NOHAM MODEL 18
$3.4 \quad$ TRAFFIC COUNT DATA 18
3.5 JOURNEY TIME DATA - TRAFFICMASTER 20
3.6 TRAFFIC SIGNAL DATA 22
3.7 BUS SERVICE AND PRIORITY DATA 22
3.8 ADDITIONAL DATA SOURCES 27
3.9 DATA CHECKING AND NORMALISATION 28
3.10 SCREENLINE AND CORDON DEFINITIONS 28
3.11 DESCRIPTION OF CALIBRATION AND VALIDATION DATA 30
4 HIGHWAY NETWORK DEVELOPMENT 31
4.1 INTRODUCTION 31
4.2 NETWORK STRUCTURE 31
4.3 LINK CODING 32
4.4 LINK SPEED-FLOW CURVES 34
4.5 JUNCTION CODING 34
4.6 PUBLIC TRANSPORT SERVICES AND BUS PRIORITY 45
4.7 PCU CONVERSION FACTORS 45
4.8 GENERALISED COST 46
5 ZONE SYSTEM DEVELOPMENT 48
5.1 INTRODUCTION 48
5.2 MODEL ZONE SYSTEM 48
5.3 CENTROID ZONE CONNECTORS 50
6 HIGHWAY MATRIX DEVELOPMENT 51
6.1 INTRODUCTION 51
6.2 OVERVIEW OF MND MATRIX DEVELOPMENT 52
6.3 VERIFICATION OF MND 54
6.4 DEVELOPMENT OF MND MATRICES 55
6.5 SYNTHETIC MATRIX DEVELOPMENT 61
6.6 GV MATRIX DEVELOPMENT 67
6.7 MATRIX MERGING 68
6.8 PRIOR MATRICES 74
6.9 PRIOR MATRIX ASSIGNMENTS 74
7 HIGHWAY ASSIGNMENT PROCESS 82
7.1 INTRODUCTION 82
7.2 TAG CONVERGENCE MEASURES 82
7.3 CONVERGENCE PARAMETERS IN SATURN 82
7.4 ASSIGNMENT CONVERGENCE 83
8 HIGHWAY NETWORK CHECKS \& CALIBRATION 85
8.1 INTRODUCTION 85
8.2 NETWORK CHECKING AND ACCEPTANCE TESTS 86
8.3 NETWORK CALIBRATION - LOCAL ADJUSTMENTS 88
9 MATRIX ESTIMATION 91
9.1 MATRIX CALIBRATION - MATRIX ESTIMATION PROCESS 91
9.2 MATRIX CALIBRATION - IMPACTS OF MATRIX ESTIMATION 92
10 MODEL CALIBRATION \& VALIDATION 104
10.1 INTRODUCTION 104
10.2 TAG CRITERIA 104
10.3 TRIP MATRIX CALIBRATION 105
10.4 LINK FLOW CALIBRATION 110
10.5 LINK FLOW VALIDATION 114
10.6 JOURNEY TIME VALIDATION 116
11 SUMMARY AND CONCLUSIONS 129
11.1 SUMMARY OF DEVELOPMENT 129
11.2 SUMMARY OF STANDARDS 129
11.3 SUMMARY 129
TABLES
Table 3-1- Summary of Counts by Count Type 19
Table 3-2 - Bus Routes with Frequencies 26
Table 4-1 - Summary of Link Coding by Road Type 33
Table 4-2 - Summary of Junction Coding by Node Type 35

Table 4-3 - Saturation Flows (PCUs per hour) of Turns from Major Arms at Priority Junctions 37
Table 4-4 - Saturation Flows of Give Way Turns from Minor Arms at Priority Junctions (with Central Reservation 38
Table 4-5 - Saturation Flows of Give Way Turns from Minor Arms at Priority Junctions (with no Central Reservation 38
Table 4-6 - Saturation Flows (PCUs per hour) Of Merges 39
Table 4-7 - Saturation Flows at Signalised Junctions 41
Table 4-8 - Roundabout Parameters Based on Number of Lanes and Turn Radius 43
Table 4-9-PCU Value by Vehicle Type 46
Table 4-10 - Generalised Cost Parameters 47
Table 5-1 - Number of Assignment Zones by District 48
Table 6-1 - MND Verifications: Average Weekday Total Two-Way Trips - All Modes 54
Table 6-2 - MND Verifications: Work/Other Split Proportions 55
Table 6-3-Car/LGV Occupancy Factors 56
Table 6-4 - Mode split after the extraction of the LGVs (people) 56
Table 6-5 - Bus Mode Share (versus Car) by MND purpose 57
Table 6-6-Zones Disaggregation Weightings 60
Table 6-7- Occupancy Factor by Car Purpose 60
Table 6-8 - PCU Factors 61
Table 6-9 - MND Matrix summary by Purpose and Period (pcu/h) 61
Table 6-10 - Gravity Model Calibrated Deterrence Function Parameters 64
Table 6-11 - Synthetic Matrix 24H to Time Period Factors 65
Table 6-12 - Synthetic Matrix Trip Return Probabilities 65
Table 6-13-Synthetic Matrix Occupancy Factors 66
Table 6-14 - Synthetic Matrix Totals 66
Table 6-15 - Merged Prior Matrix Summary by User Class and Period (pcu/hr) 74
Table 6-16 - Prior Matrix Screenline and Cordon Performance 75
Table 6-17 - Prior Matrix Link Flow Performance 75
Table 6-18 - Prior Matrix Assignment Performance - Screenline/Cordon Total - All Vehicles76
Table 6-19-Prior Matrix Assignment Performance - Screenline/Cordon Total - Cars 77

Table 6-20 - Prior Matrix Assignment Performance - Screenline/Cordon Total - LGVs 79
Table 6-21 - Prior Matrix Assignment Performance - Screenline/Cordon Total - HGVs 80
Table 7-1 - TAG Convergence Measures 82
Table 7-2 - Assignment Parameters 83
Table 7-3 - Calibrated Assignment Convergence Statistics 84
Table 9-1 - SATURN Constraints for Matrix Estimation 91
Table 9-2 - Impacts of ME: Trip Length Distribution 96
Table 9-3 - Impacts of ME: Zonal Cell Values 97
Table 9-4 - Impacts of ME: Zonal Trip Ends 100
Table 9-5-Impacts of ME: Sector to Sector Matrices 102
Table 10-1 - Trip Matrix Verification Criteria 104
Table 10-2 - Link Flow Verification Criteria 105
Table 10-3 - Journey Time Routes Validation Criteria 105
Table 10-4 - Trip Matrix Calibration Screenline and Cordons 106
Table 10-5 - Calibrated Trip Matrix Calibration 107
Table 10-5 - Calibrated Trip Matrix Screenline and Cordons: AM Peak 107
Table 10-6 - Calibrated Trip Matrix Screenline and Cordons: Inter Peak 108
Table 10-7 - Calibrated Trip Matrix Screenline and Cordons: PM Peak 109
Table 10-8 - Link Flow Calibration: All Counts 110
Table 10-9 - Turn Flow Verification: All Counts 110
Table 10-10 - Calibrated Trip Matrix Validation 114
Table 10-11 - Calibrated Trip Matrix Screenline and Cordons: AM Peak 115
Table 10-12 - Calibrated Trip Matrix Screenline and Cordons: Inter Peak 115
Table 10-13 - Calibrated Trip Matrix Screenline and Cordons: PM Peak 116
Table 10-14 - Link Flow Validation: All Counts 116
Table 10-15 - Journey Time Validation: All Routes 117
Table 10-16 - Journey Time Validation: Core Area Routes 117
Table 10-17- Journey Time Validation Summary by Route: AM Peak 117
Table 10-18- Journey Time Validation Summary by Route: Inter Peak 120
Table 10-19 - Journey Time Validation Summary by Route: PM Peak 123

FIGURES

Figure 2-1 - Selby District Transport Model 12
Figure 2-2 - Fully Modelled Area Network Coverage 13
Figure 2-3 - Buffer and External Area Network Coverage 14
Figure 2-4 - C2Web Daily Flow Profile 15
Figure 3-1 - MND Zone Area 17
Figure 3-2 - ATC and MCC Data Locations 18
Figure 3-3 - Journey Time Data Collection Routes: Selby Urban Area 21
Figure 3-4 - Journey Time Raw Data Routes: Selby District 21
Figure 3-5 - AM Peak Bus Route Network 23
Figure 3-6 - Inter Peak Bus Route Network 24
Figure 3-7 - PM Peak Bus Route Network 25
Figure 3-8 - Screenline and Cordon Definitions: Selby Urban Area 29
Figure 3-9 - Screenline and Cordon Definitions: Selby District 29
Figure 3-10 - Calibration/Validation Count Definitions - Selby District 30
Figure 4-1- SDSM Network Structure 32
Figure 4-2 - Selby Urban Area and Surrounding Network Extent 33
Figure 4-3 - Example of a Speed-Flow Curve 34
Figure 4-4 - Selby Urban Area Node Coding Types 36
Figure 4-5 - Example Coding: Priority Junction 40
Figure 4-6 - Railway Crossings: Selby District 42
Figure 4-7 - Example Coding: Signalised Junction 42
Figure 4-8 - Example Coding: Roundabout 44
Figure 4-9- Example Coding: Exploded Roundabout 45
Figure 5-1 - Selby Urban Area and Surrounding Zone Definitions 49
Figure 5-2 - Selby District Model Zone Definitions 49
Figure 5-3 - Buffer and External Area Model Zone Definitions 50
Figure 6-1 - Prior Matrix Development Process 52
Figure 6-2 - MND Matrix Development Process 53

Figure 6-3 - MND Disaggregation Requirements
Figure 6-4 - MND Verifications: TLD Comparison - All purposes and all modes 55
Figure 6-5-LGVs extraction process 56
Figure 6-6 - Trip Length Distribution (5km bands) - AM 58
Figure 6-7 - Trip Length Distribution (5km bands) - IP 58
Figure 6-8 - Trip Length Distribution (5km bands) - PM 59
Figure 6-9 - Synthetic Matrix Development Process 62
Figure 6-10 - MND vs Synthetic Trip Length Distribution: AM Business 69
Figure 6-11 - MND vs Synthetic Trip Length Distribution: AM Commute 69
Figure 6-12 - MND vs Synthetic Trip Length Distribution: AM Other 70
Figure 6-13 - MND vs Synthetic Trip Length Distribution: IP Business 70
Figure 6-14 - MND vs Synthetic Trip Length Distribution: IP Commute 71
Figure 6-15 - MND vs Synthetic Trip Length Distribution: IP Other 71
Figure 6-16 - MND vs Synthetic Trip Length Distribution: PM Business 72
Figure 6-17 - MND vs Synthetic Trip Length Distribution: PM Commute 72
Figure 6-18 - MND vs Synthetic Trip Length Distribution: PM Other 73
Figure 6-19 - Matrix Merging Process 73
Figure 8-1 - Calibration and Validation Process 86
Figure 8-2 - Modelled Link Speeds 89
Figure 8-3- Links with HGV Restrictions: Selby Urban Area 89
Figure 8-4 - Links with HGV Restrictions: Selby District 90
Figure 9-1 - Matrix Estimation Process 92
Figure 9-2 - AM Peak - Employer's Business Car - Trip Length Distribution (Prior vs Post-
ME)
Figure 9-3 - AM Peak - Commuting Car - Trip Length Distribution (Prior vs Post-ME) 94
Figure 9-4 - AM Peak - Other Car - Trip Length Distribution (Prior vs Post-ME) 94
Figure 9-5 - AM Peak - LGV - Trip Length Distribution (Prior vs Post-ME) 95
Figure 9-6 - AM Peak - HGV - Trip Length Distribution (Prior vs Post-ME) 95
Figure 9-7 - Correlation of Prior and Post-ME Zonal Cell Values By User Class - AM Peak97 Figure 9-8 - Correlation of Prior and Post-ME Zonal Trip Ends By Car User Class - AM Peak

Figure 9-9 - Correlation of Prior and Post-ME Zonal Trip Ends By Goods Vehs - AM Peak

Figure 9-10-Calibration Sectors 103
Figure 10-1 - GEH Statistic of Modelled Flow vs Observed Count by Direction - AM Peak 111
Figure 10-2 - GEH Statistic of Modelled Flow vs Observed Count by Direction - Inter Peak

Figure 10-3 - GEH Statistic of Modelled Flow vs Observed Count by Direction - PM Peak 113

Figure 10-4 - Journey Time Route Validation Summary Map: AM Peak 127
Figure 10-5 - Journey Time Route Validation Summary Map: Inter Peak 127
Figure 10-6 - Journey Time Route Validation Summary Map: PM Peak 128

APPENDICES

APPENDIXA

SPEED FLOW CURVES
APPENDIXB
MND VERIFICATION REPORT
APPENDIX C
SYNTHETIC MATRIX CALIBRATION
APPENDIXD
NETWORK ACCEPTANCE CHECKS
APPENDIXE
PRIOR MATRIX SCREENLINE VERIFICATION
APPENDIXF
IMPACTS OF MATRIX ESTIMATION
APPENDIXG
SCREENLINE VERIFICATION
APPENDIXH
LINK FLOW VERIFICATION
APPENDIXI

JOURNEY TIME ROUTE VALIDATION

1 INTRODUCTION

1.1 BACKGROUND

1.1.1. Selby is the southernmost district of North Yorkshire, bound by the unitary authority of City of York to the north, East Riding of Yorkshire to the east, Wakefield council to the south and City of Leeds to the west. Selby District Council (SDC) covers wards including Selby East, Selby West, Tadcaster, Sherburn in Elmet and Eggborough. Selby district has a population of around 84,000 based on 2011 Census information.
1.1.2. \quad The previous Selby Town Traffic model was developed by Mouchel and had a base year of 2016. The model study area covered Selby town centre, extending to Cawood to the northwest of the town and Hemingbrough to the southeast. The model was used to test the transport impacts of potential development sites and infrastructure improvements included in the local plan.
1.1.3. WSP were commissioned by North Yorkshire County Council (NYCC) and SDC to develop the updated Selby District Strategic Transport Model (SDSTM) for a 2019 base year to provide a tool to test the emerging Selby District Local Plan.
1.1.4. When fully developed, the modelling suite will include a SATURN highway assignment model in addition to a variable demand model (VDM) being developed in CUBE Voyager.
1.1.5. It was agreed with NYCC and SDC that the project methodology will be developed incrementally, undertaking the work in two stages, namely:

- Stage 1- Identify network congestion hotspots;
- Stage 1 makes use of the currently available Selby Town Strategic model to identify congestion hotpots which could influence the development sites included in the Local Plan; and
- Stage 2- Detailed model build;
- Stage 2 will focus on developing the detailed SATURN model for the areas identified in Stage 1 above to produce a representative robust modelling tool to support and test the proposed Selby District Local Plan.
1.1.6. The analysis and summary of Stage 1 assessment was shared with NYCC and SDC for review, comments and approval in August 2020.
1.1.7. In discussion following submission of the Stage 1 report, it has broadly been accepted that a district wide model update was required to ascertain the strategic highway network impacts of the developments identified within the development log.

1.2 PURPOSE OF THIS REPORT

1.2.1. \quad This Local Model Validation Report (LMVR) has been prepared to document the development and validation of the highway assignment model for SDSTM with reference to DfT's Transport Analysis Guidance (TAG) which defines the best practice for transport modelling, contained within Unit M3.1 Highway Assignment Modelling.
1.2.2. Reference to the forthcoming TAG unit M2.2 (Base Year Demand Matrix Development), previewed under the orderly release process, has also been made when developing travel demands. This report also makes references to the Model Specification Report (MSR) throughout.
1.2.3. This report summarises how well the highway model validates against the observed data in the study area and how it compares against the modelling criteria and principals outlined in TAG.
1.2.4. The base year model will be used to produce the 2040 forecast year model runs which will be used to assess the upcoming Selby District Local Plan.
1.2.5. The content of this report is structured as follows:

- Chapter 1 - Introduction
- Chapter 2 - Base Model Specification,
- Chapter 3 - Summary of Model Data Collection,
- Chapter 4 - Highway Network Development,
- Chapter 5 - Zone System Development,
- Chapter 6 - Highway Matrix Development,
- Chapter 7 - Highway Assignment Process,
- Chapter 8 - Highway Network Checks \& Calibration
- Chapter 9 - Matrix Estimation
- Chapter 10 - Model Calibration \& Validation, and
- Chapter 11 - Summary and Conclusions.

2 BASE MODEL SPECIFICATION

2.1 OVERALL MODEL STRUCTURE

2.1.1. The SDSTM has three key components, illustrated in Figure 2-1 to demonstrate their interaction within the overall model structure:

- Highway assignment model developed in SATURN (SHAM);
- External forecasting model developed in CUBE Voyager (SEFM); and
- Variable demand model developed in CUBE Voyager (SVDM).

This report is focussed on the development of the base year Selby District Strategic Model (SDSM).
2.1.2. The development of the other two components - variable demand model and trip-end model - will be documented in subsequent reporting.

Figure 2-1 - Selby District Transport Model

2.2 MODEL SOFTWARE PLATFORM

2.2.1. The SDSM has been developed in SATURN (Simulation and Assignment of Traffic to Urban Road Networks) which is static equilibrium highway assignment software. SATURN is considered as the market leader in this field due to its enhanced simulation routines for modelling congested assignment, including blocking back and flow metre propagation through the network.
2.2.2. SDSM has been developed using SATURN version 11.5 .05 H , as set out in the MSR.
2.2.3. The variable demand model is developed in CUBE Voyager. CUBE Voyager can interface with SATURN to run programmes and to extract model data and outputs and those processes will be incorporated within the variable demand model.

2.3 MODEL COVERAGE

2.3.1. The SDSTM model coverage adopts a hierarchical approach to level of detail, in line with TAG. The network coverage and areas of detail, referring to the fully modelled area (FMA), buffer and external area definitions, have been developed as they were defined in the MSR.

- The FMA over which interventions are expected to impact (based on where flow and delay changes are likely to occur given the locations of schemes) includes full trip movements and the network is simulated.
- The extended buffer area over which flow changes will induce speed changes has speed flow curves coded on links.
- The external area over which interventions are not expected to have an impact has only partial representation of trips and a sparse network with fixed speed/flow relationships coded.
2.3.2. The extent of the FMA is illustrated in Figure 2-2 and covers the whole Selby District area and beyond, including Knottingley and major routes into/across the district, such as the M62, A1(M) and A64.
2.3.3. The extent of the fully modelled and buffer area and external area are illustrated in Figure 2-2 and Figure 2-3 respectively.

Figure 2-2 - Fully Modelled Area Network Coverage

Figure 2-3 - Buffer and External Area Network Coverage

2.4 BASE YEAR

2.4.1. The model has been developed to represent a base year of 2019.
2.4.2. It represents an average neutral weekday in October 2019 based on the primary new demand and traffic count data collection period, as defined in the MSR.

2.5 MODEL TIME PERIODS

2.5.1. The modelled assignment time periods in SDSM, as set out in the MSR, are:

- AM peak hour 08:00-09:00.
- Inter peak average hour 10:00-16:00; and
- PM peak hour 17:00-18:00.
2.5.2. C2Web count locations cover the radial routes on the local network and, as a subset of the count data, provide a representation of the demand on routes to and from the urban area. The daily flow profile across these locations is illustrated in Figure 2-4.
2.5.3. The outputs from SDSM will be able to be converted to full 24 -period for input into variable demand modelling and that process will be documented in the demand model reporting.

Figure 2-4-C2Web Daily Flow Profile

2.6 MODEL ASSIGNMENT USER CLASSES

2.6.1. The modelled highway assignment user classes in SDSM, as set out in the MSR, are:

- Car employer's business;
- Car commuting;
- Car other;
- Light goods vehicles (LGVs); and
- Heavy goods vehicles (HGVs).

2.7 MODEL VERSION

2.7.1. This report relates to the validated base year SDSM with file version references:

- Network / model: Selby_BY_2019_TS\{1,2,3\}_nxx.ufs;
- Prior matrix: PriorMatrix_HW_\{AM, IP, PM\}2019_mbxx.ufm; and
- Calibrated matrix: PriorMatrix_HW_\{AM, IP, PM\}2019_mbxx_I6.ufm.

3 SUMMARY OF MODEL DATA COLLECTION

3.1 INTRODUCTION

3.1.1. To develop SDSM to a robust level which is compliant with TAG, a variety of data types were required either though existing sources or the commission of new surveys. This chapter summarises the data collected relevant to SDSM including:

- Travel demand data;
- Traffic count data;
- Journey time data;.
- Traffic signal data;
- Bus service and priority data;
- Bus lane data; and
- Additional data sources.

It also details:

- Screenline and cordon definitions; and
- Description of calibration and validation data.
3.1.2. The Transport Data Collection Report (TDCR) contains a more detailed description of these data sources and their verification for use in the model build. This chapter summarises the application of the data sources which were relevant for use in the highway model development.

3.2 TRAVEL DEMAND DATA - MOBILE NETWORK DATA

3.2.1. Building a transport model necessitates the development of base year travel demand matrices for assignment. This required an understanding of the trip making behaviour for Selby district including trip rates, trip length distributions and travel purpose.
3.2.2. The suitability of different demand data sources was considered as part of the model development scoping exercise and documented in the MSR. It was determined that MND would be used as the primary demand data source.
3.2.3. Telefónica were commissioned to derive mobile phone origin-destination (MPOD) matrices from MND using the data from the O2 network. The data collection period covered all weekdays from 01/10/2019 to 31/10/2019, excluding the dates between 28/10/2019 and 31/10/2019 due to school holidays.
3.2.4. The data specification includes a study area, and an outer area. The study area boundary is shown in Figure 3-1. All trips that interact with the study area are included in the outturn MND matrices.
3.2.5. The mobile phone raw events available for this project were provided for all zones within the Study area. Only the trips relating to the Study area, i.e., trips from, to and traversing the area are included in the matrix. Therefore, trips for external zones within or overlapping the Study area are only included if they interact with the Study area.
3.2.6. Data was supplied in an MND Request Zone system, to make clear the distinction between these zones and the actual assignment model zone system. The MND Request Zone system is less
detailed than the assignment zone system since O 2 were confident in the spatial accuracy of the MND from LSOA upwards. It comprised 300 zones of which 205 were within the study area. The Request Zone system is illustrated in Figure 3-1.
3.2.7. An MND Verification Report is attached in Appendix B. That document reports on the detailed MND data specification, analysis, and verification. It is summarised in Section 6.3.

Figure 3-1 - MND Zone Area

3.3 TRAVEL DEMAND DATA - TFN NOHAM MODEL

3.3.1. The resultant MND matrices (described in the previous sub-section) included all trips to, from, within and passing through the defined MND study area. Whilst the MND was considered acceptable for the purpose of the car demand matrix development, data required to develop freight demand matrices were insufficient due to the nature of the MND data being collated (i.e., not differentiated by vehicle types).
3.3.2. Light and Heavy Goods Vehicles (GV) prior matrices were therefore required to be supplemented with a secondary data source to infill those trips in the MPOD data matrices. It was agreed with SDC and Transport for the North (TfN) that the North Highway Assignment Model (NoHAM) freight demand matrices would be employed for this purpose. Their application is documented in Chapter 6.

3.4 TRAFFIC COUNT DATA

3.4.1. A gap analysis was undertaken to establish traffic significant links and junctions within the study area which were not covered by the existing data. Areas were also flagged where deficiencies or limitations had been identified in the existing data, such as survey months or consistency with other counts. As a result of this exercise, a large data collection commission was undertaken. The locations of all ATC and MCC data collected are shown in Figure 3-2.
3.4.2. There were 54 ATC surveys undertaken over a 3-week period for October 2020, concluding before the start of half term (28th October 2020). The data obtained was tabulated by survey day with traffic volume reported in fifteen-minute intervals.
3.4.3. The locations were chosen based on proposed screenlines and cordons, watertight coverage of the district boundary and any other key links not covered by those criteria or existing data. The locations are shown in Figure 3-2 below.

Figure 3-2 - ATC and MCC Data Locations

3.4.4. There were 59 MCC surveys undertaken for a twelve-hour period (07:00-19:00) for one day in October 2020. The data was tabulated in fifteen-minute intervals with flow volumes reported by at least six vehicle types:

- Pedal cycle / motorcycle
- Car
- LGV
- OGV1
- OGV2; and
- Buses and Coaches.
3.4.5. The locations corresponded to an ATC survey and the sample was chosen to provide local classified data for Selby and the key towns across the district to supplementing existing data. The locations are shown in Figure 3-2.
3.4.6. The commissioned MCCs for this study were deployed in the modelling to derive classifications for ATCs. In line with the agreed scope the model has not been calibrated or validated to turning movements, which generally have a lower level of assurance than link volumes.
3.4.7. Additionally, permanent and historic counts were available from various sources, including:
- WebTRIS online portal providing access to permanent count site data on Highways England's strategic road network including the M62, $\mathrm{A} 1(\mathrm{M})$ and A 64 ;
- C2 permanent count site dataset hosted by North Yorkshire County Council providing data for parts of the study area;
- Historic count data available from the DfT count database, covering the study area and parts of the surrounding area; and
- MCC surveys in Church Fenton and Tadcaster.
3.4.8. The number of counts by count type are summarised in Table 3-1. The application of this data for calibration and validation is described in Section 3.11.

Table 3-1- Summary of Counts by Count Type

Count Type	No. of Counts
2020 ATC	54
2020 MCC	59
2016 ATC	12
2016 MCC	25
WebTRIS	38
C2Web	26
DfT	57
MCC Church Fenton/Tadcaster	21
Other	3
Total	295

3.5 JOURNEY TIME DATA - TRAFFICMASTER

3.5.1. Observed journey time data are normally used for the purpose of a Base year journey time validation, i.e., to ensure the model can represent accurately level of delays and congestion within the study area.
3.5.2. Trafficmaster journey time data is a dataset owned by the DfT which is sourced via GPS (Global Positioning System) data from devices and trackers fitted to a variety of fleet vehicles (cars, LGVs and HGVs) and buses.
3.5.3. The data is collected by the devices through identifying the location of each device every 1 to 10 seconds on ITN (Integrated Transport Network) links. It is acknowledged that the sample population for Trafficmaster can be skewed, including a bias within cars towards high end vehicles and with a higher than representative proportion of LGVs, however it can be considered as the most comprehensive big dataset readily available for journey times data.
3.5.4. Access to Trafficmaster data for this project was provided by NYCC, covering the North Yorkshire area. The data was processed internally and resulted in a summarised dataset listing link distance and average travel time for ITN links.
3.5.5. The data specification offered was weekday term time for all vehicle types in 2019 for each of the modelled time periods (see 2.5).
3.5.6. The data has been processed internally and is summarised by ITN link. The data was sense checked on a route basis for directionality and tidality. An additional check was undertaken to remove any links with speeds that were unreasonably over the speed limit for that link and any links with less than 5 kph speeds.
3.5.7. A total of 35 bi-directional journey time routes have been defined which cover all the key routes within the study area. They will be used for the model validation that is described in more detail in the next chapter.
3.5.8. The journey time routes are also split between two geographical areas, namely

- Selby district (35 bi-directional journey time routes); and
- Selby Urban Area (20 bi-directional journey time routes)
3.5.9. It should be noted that the Selby district journey time routes include the journey time routes within the Selby Urban Area. The coverage of the journey time routes within Selby is shown in the following Figure 3-3 \& Figure 3-4 .

Figure 3-3 - Journey Time Data Collection Routes: Selby Urban Area

Figure 3-4 - Journey Time Raw Data Routes: Selby District

3.6 TRAFFIC SIGNAL DATA

3.6.1. Traffic signal junctions within the model simulation area require operation data in order for them to be coded within SATURN. Traffic signal specifications were obtained from NYCC for the identified junctions which included data such as:

- Phase and stage diagrams;
- Phase minimum/maximum sets;
- Timetables defining minimum and maximum sets to apply by time-period; and
- Phase intergreen times.
3.6.2. NYCC provided 2019 signal timing data in a template format that is supplied by WSP by for signalised junctions across the network. It included stage and phasing diagrams and, in most cases, observed green times that span multiple years' worth of observed data.
3.6.3. Where observed green time data was not available min/max times were used as the starting point. In a limited number of locations template coding was used to develop most likely timings. The location of all signalised junctions is shown in Figure 4-4.

3.7 BUS SERVICE AND PRIORITY DATA

3.7.1. Bus routing and timetable data was taken from the Routelines Dataset provided by Basemap for 2019. Routelines is a dataset covering the whole of GB which contains a series of road links detailing the shortest journey taken by a bus between stops along a route.
3.7.2. In addition, information on the route operator, number and name was recorded, as well as the service number and direction of travel.
3.7.3. The dataset also contains service frequency information. All data is contained within a shapefile for each route. The bus routes were joined to the highway network by matching each bus stop to the nearest highway node. Figure 3-5 to Figure 3-7 shows the bus routes in each time period and Table 3-2 details the route ID, direction and frequencies for the three time periods.

Figure 3-5 - AM Peak Bus Route Network

Figure 3-6 - Inter Peak Bus Route Network

Figure 3-7 - PM Peak Bus Route Network

Table 3-2 - Bus Routes with Frequencies

Route ID	Direction	Frequency per hour			Route ID	Direction	Frequency per hour		
		AM Peak	Inter Peak	PM Peak			AM Peak	Inter Peak	PM Peak
1	Outbound	-	1	-	1	Inbound	-	1	-
4	Outbound	-	1	-	4	Inbound	-	1	-
41	Inbound	-	-	1	4A	Outbound	1	-	-
37	Outbound	-	1	-	37	Inbound	-	1	1
42	Southbound	1	1	1	42	Northbound	1	1	2
77	Outbound	1	1	-	77	Inbound	-	1	-
148	Outbound	2	3	3	148	Inbound	3	3	2
149	Eastbound	3	3	3	149	Westbound	3	3	3
400	Northbound	1	-	-	400	Southbound	2	-	-
401	Southbound	1	2	2	401	Northbound	1	2	2
402	Outbound	-	1	1	402	Inbound	1	-	-
403	Outbound	1	1	1	403	Inbound	1	1	1
405	Outbound	2	1	1	405	Inbound	1	1	1
406	Outbound	-	1	-	406	Inbound	-	1	-
409	Inbound	1	1	1	409	Outbound	-	1	1
415	Inbound	4	4	4	415	Outbound	4	4	4
420	Outbound	-	1	-	420	Inbound	-	1	-
476	Outbound	1	1	1	476	Inbound	1	1	-
486	Inbound	-	1	-	486	Outbound	-	1	-
488	Inbound	-	1	-	488	Outbound	-	1	-
492	Northbound	1	1	1	492	Southbound	-	1	1
493	Southbound	1	1	1	493	Northbound	1	1	-
493 lower	Southbound	1	1	1	$\begin{aligned} & 493 \\ & \text { lower } \end{aligned}$	Northbound	1	1	1
494	Northbound	1	-	-	494	Southbound	-	1	-

Route ID	Direction	Frequency per hour			Route ID	Direction	Frequency per hour		
		AM Peak	Inter Peak	PM Peak			AM Peak	Inter Peak	PM Peak
495	Northbound	-	1	-	495	Southbound	-	1	-
496	Inbound	-	1	-	496	Outbound	-	1	-
616	Southbound	1	-	-	616	Northbound	-	1	-
634	Northbound	-	1	-	634	Southbound	-	-	-
843	Northbound	-	-	-	843	Southbound	-	-	-
T2	Southbound	-	1	-	T2	Northbound	1	-	-
TK2	Northbound	-	1	-	TK2	Southbound	-	1	-
X4	Inbound	1	-	-	X4	Outbound	-	-	1
X45	Northbound	-	-	-	X45	Southbound	-	-	-
X62	Westbound	-	1	1	X62	Eastbound	--	1	-
18	Northbound	1	1	1	18	Southbound	1	1	-
164	Westbound	-	1	1	164	Eastbound	1	1	-
64	Westbound	1	1	-	64	Eastbound	-	1	-
5		-	1	1	3	Outbound	-	-	1
3	Inbound	1	-	-	840	Westbound	1	1	1
840	Eastbound	1	1	1	T1	Eastbound	-	1	-
T1	Westbound	1	-	-					

3.8 ADDITIONAL DATA SOURCES

3.8.1. Further data sources were required to support the base highway matrix development; the National Travel Survey (NTS) and TEMPro 8.1 database including:

- Trip ends;
- Trip purposes;
- Mode share;
- Time of outward and return journeys;
- Trip time and trip length profiles; and
- Vehicle occupancies.
3.8.2. Land-use GIS, census data and education data sets were used to derive splitting factors to disaggregate the TEMPro trip-ends associated with the middle layer super output areas (MSOAs) to trip ends associated with the modelled zones.
3.8.3. Additionally, Experian Mosaic socio-demographic data has been used. As Census Journey to Work (JTW) data was collected eight years prior to the model year and the pandemic placing more reliance on the synthetic matrix, it was decided to use the more up-to-date Experian Mosaic dataset to derive the splitting factors for population figures. The Mosaic dataset is postcode based which allowed for easy aggregation of the statistics to the model zone system and the data was cross checked against census data for validation purposes.
3.8.4. Further details of these data sources applied within the matrix build process are provided in Chapter 5. They are also used in the Mobile Network Data Verification Report (Appendix B).
3.8.5. A large amount of GIS data is available through Ordnance Survey's (OS) OpenData program which can be used freely with copyright acknowledgement. The data obtained from OpenData included:
- Base mapping at various scales for reporting and presentation; and
- Shapefiles for various geographical boundary definitions to define the zone system and other sectors and/or reporting areas which are used throughout this report.
3.8.6. Several of the images used in this report use Open Street Map tiles, which are available under the Open Database License. The cartography is licensed as CC-BY-SA.
(https://www.openstreetmap.org/copyright)

3.9 DATA CHECKING AND NORMALISATION

3.9.1. Before count and journey time data was used in the matrix build and calibration/validation, work was undertaken to check the validity of the data. Checks on the count data included:

- Daily and hourly flow profiles. Large variations in day-to-day flows could be indicative of a technical problem with the count or an issue with the local network (such as roadworks or an accident) which has affected the count for one day or more;
- Resolution of conflicting counts on adjacent links - particularly important when running matrix estimation;
- Mapping of observed traffic flows - displaying traffic volume as bandwidth provides a quick visual check of any very large or small flows; and
- Sense checks based on local knowledge.
3.9.2. As part of the Calibration and Validation process, a further cleaning process was undertaken to better validate the model. Details on any of the data cleaning process is documented in the Selby Data Collection Report.

3.10 SCREENLINE AND CORDON DEFINITIONS

3.10.1. Resultant from the data available a set of 13 bi-directional traffic flow screenlines and cordons have been defined, providing comprehensive coverage of the study area. Their locations are illustrated in Figure 3-8 \& Figure 3-9 below.
3.10.2. These are split into calibration and validation screenlines/cordons.

Figure 3-8 - Screenline and Cordon Definitions: Selby Urban Area

Figure 3-9-Screenline and Cordon Definitions: Selby District

3.11 DESCRIPTION OF CALIBRATION AND VALIDATION DATA

3.11.1. Changes to TAG document (related to the November 2019 release) suggest: "The extent of data available for model development is often limited and it may be appropriate to use data first for validation through independent testing of other data and model relationships, and then to undertake additional calibration to refine the model. In this case the extent of change from introducing complementary data should be explained."
3.11.2. Based on this, the traffic count data, as described in Section 1.1, is used:

- For independent validation of the prior matrix assignments at screenline level; and
- For calibration of the matrices in matrix estimation.
3.11.3. The traffic count dataset is also used for reporting model link flow comparisons and statistics. Counts have been divided into calibration and validation counts, as highlighted in Figure 3-10.

Figure 3-10 - Calibration/Validation Count Definitions - Selby District

4 HIGHWAY NETWORK DEVELOPMENT

4.1 INTRODUCTION

4.1.1. Highway assignment models involve representation of networks using a series of nodes and links, where links represent sections of the roads and nodes represent junctions within the networks.
4.1.2. Within the study area, the highway networks are modelled in detail, including all traffic significant routes. Outside the study area, a skeletal network was developed, with key routes for access/egress and through traffic. The model coverage and extent of the network was shown previously in Figure 2-2 \& Figure 2-3.
4.1.3. This chapter describes the network development process and coding approach in each of those areas, and is structured as follows:

- Network structure.
- Link coding.
- Junction coding.
- Public transport services and bus priority.
- Generalised cost; and
- PCU conversion factors.
4.1.4. Prior to the start of the network coding, a Coding Manual was produced, reviewed, and agreed with SDC, establishing coding assumptions to be used in developing the SDSM network.

4.2 NETWORK STRUCTURE

4.2.1. The previous Selby town centre model has been improved and additional network details were added to ensure detailed coverage to cover the Selby District full modelled area (represented in red in the Figure 4-1)
4.2.2. For the highway network, a 3-tier level structure was developed as below and shown in the Figure 41 below:

- Within Selby district study area: fully simulation with accurate junction coding in combination of speed-flow curve to represent accurately travel costs within the study area.
- Outside study area, a less detailed coding was adopted which travel costs are represented in a form of speed-flow curve; and
- Externally from Selby district (beyond M62 to the south, A64 to the north and A1(M) to the west), fixed speed coding was adopted.

Figure 4-1 - SDSM Network Structure

4.3 LINK CODING

4.3.1. The simulation area network structure was developed from the previous Selby SATURN model within the simulation area. Infill of detail took place where greater density was required including identified growth areas and where schemes are proposed.
4.3.2. Ariel images have provided a valuable source of information on the network to be modelled. Detail such as number of lanes, lane markings and flare lengths have been ascertained from this source.
4.3.3. Links in SATURN have been coded by direction, based on the following information:

- Road class (Motorways, Trunk roads, A road, B road and C/unclassified roads).
- Road type (single or dual carriageway).
- Speed limit.
- Number of lanes; and
- Any other restriction on the roads (e.g., height, weight restriction, etc.).
4.3.4. The model network extent for Selby urban area is mapped in Figure 4-2. A summary by road type is reported in Table 4-1. The values are reported across the whole model, i.e., including "buffer" and external network.

Figure 4-2 - Selby Urban Area and Surrounding Network Extent

Table 4-1 - Summary of Link Coding by Road Type

Road Type	Number of Modelled Links	Total Modelled Length (km)
Motorway	429	3,061
A Road	2,583	5,368
B Road	376	388
Local Road	3,262	1,691
Total	6,650	10,508

4.4 LINK SPEED-FLOW CURVES

4.4.1. A set of appropriate speed-flow curves was then adopted to reflect a relationship between traffic volume and travel speed on a link. Figure 4-3 illustrates a generic form of a speed-flow curve.

Figure 4-3 - Example of a Speed-Flow Curve

4.4.2. For each speed-flow curve, capacity, free-flow speed (S_{0}), speed at capacity (S_{c}) and the rate of speed decline relative to flow increase was determined by various factors including the road class, road type, number of lanes and consideration of street characteristics including on street parking or traffic management which may prohibit the free flow of traffic.
4.4.3. Speed flow curves for the SDSM are derived from COBA 10 guidance and used for links within the buffer area and on links greater than 100 m within the simulation area where volume delay is likely to be of importance to the traffic routeing. The list of all the speed-flow curves adopted for the SDSM is provided in Appendix A.
4.4.4. For zones external to the study area, associated network is mainly used to create connectivity from those external zones to the study area. At this level, route choices are limited and therefore a much simpler approach was adopted. In the buffer area (see Figure 4-1) speed flow curves are applied on links. In the external area links are coded as fixed speed network. For external area network links, where data was available, speed data from Trafficmaster was used and all remaining links used speed data from NRTF 2018, based on region, road class and time period.

4.5 JUNCTION CODING

4.5.1. Junctions play a key role within the simulation area as they affect route choice particularly with respect to turning delays. Within the simulation area, the junctions will be modelled in detail to represent the effects of traffic flows on delays and queues. Each junction will be coded using detailed information which will include the:

- Junction type (traffic signal, roundabout, priority);
- Number of approaches;
- Number and width of each approach, flare length and lane discipline;
- Permitted and prohibited turns by vehicle type;
- Additional parameters according to junction type (e.g., saturation flows, signal timings and phasing, gap acceptance value); and
- Vehicle circulating capacity and travel time (for roundabouts).
4.5.2. A total of 3,793 nodes, of which 1,586 are simulation junction nodes, were coded within the model as summarised in Table 4-2 and mapped in Figure 4-4.

Table 4-2 - Summary of Junction Coding by Node Type

SATURN Type	Description	Number of Nodes
0	External node	1,564
1	Priority junction	1,320
	Exploded roundabout	101
	Motorway merges/diverges	68
2	Mini-roundabout	23
3	Signalised junction	48
	Exploded signalised roundabout	3
4	Dummy	0
5	Roundabout (with U-turns)	23
n / a	Zone centroids	$\mathbf{6 4 3}$
	Total	$\mathbf{3 , 7 9 3}$

Figure 4-4 - Selby Urban Area Node Coding Types

Priority Junctions

4.5.3. Default saturation flows for major and minor arms were based on the calculations provided in DMRB Volume 6 Section 2 Part 6 TD42/95. The priority junction saturation flows can be viewed in Table 43 to Table 4-6.
4.5.4. These were reviewed and adjusted during the calibration and validation process alongside other junction parameters in order to more accurately represent delays and to reflect local site variation.

Table 4-3 - Saturation Flows (PCUs per hour) of Turns from Major Arms at Priority Junctions

Turn	Radius					No	-Single	Lane			
		Lane	1 lane	21	nes	3 la	nes		nes	51	nes
			Incl N'side	Incl N'side	No N'side	Incl N'side	No N'side	Incl N'side	No N'side	Incl N'side	No N'side
Left	Tight	1,530	1,480	3,060		4,640	4,750	6,220	6,330		
	Std	1,730	1,670	3,460		5,240	5,370	7,030	7,150		
	Wide	1,850	1,790	3,700		5,610	5,740	7,520	7,650		
Ahead	Tight	1,870	2,010	3,870	4,010	5,880	6,020	7,880	8,020	9,890	10,030
	Std	1,980	2,060	3,970	4,110	6,030	6,170	8,080	8,220	10,140	10,280
	Wide	2,070	2,210	4,270	4,410	6,480	6,620	8,680	8,820	10,890	11,030
				Un-	opposed	Right T					
	Tight	1,530	1,480	3,060	3,430	4,640	4,750	6,220	6,330		
Right	Std	1,730	1,670	3,460	3,580	5,240	5,370	7,030	7,150		
	Wide	1,850	1,790	3,700	3,920	5,610	5,740	7,520	7,650		
					posed	ight Tur					
Turn	Radius		1 lane			2 lanes			3 lanes		
		Poor Vis	Ave Vis	Good Vis	Poor Vis	Ave Vis	Good Vis	Poor Vis	Ave Vis	Good Vis	
Opp.	Tight	640	690	730	1,280	1,370	1,460	1,920	2,050	2,190	
	Std	720	770	820	1,350	1,440	1,540	2,020	2,160	2,300	
	Wide	780	830	890	1,550	1,660	1,770	2,320	2,480	2,490	

Terminology: N'side $=$ Nearside; Std $=$ Standard; Ave $=$ Average; Vis $=$ Visibility.

Table 4-4 - Saturation Flows of Give Way Turns from Minor Arms at Priority Junctions (with Central Reservation

Give Way Turns with Central Reservation Present

Turn	Radius	Give Way Turns with Central Reservation Present											
		1 lane			2 lane			3 lane			4 lane		
		Poor Vis	Ave Vis	Good Vis	Poor Vis	Ave Vis	Good Vis	Poor Vis	Ave Vis	Good Vis	Poor Vis	Ave Vis	$\begin{aligned} & \text { Good } \\ & \text { Vis } \end{aligned}$
Left	Tight	640	690	730	1,280	1,370	1,460	1,920	2,050	2,190	2,550	2,730	2,910
	Std	720	770	820	1,350	1,440	1,540	2,020	2,160	2,300	2,690	2,880	3,070
	Wide	780	830	880	1,550	1,660	1,760	2,320	2,480	2,640	3,090	3,310	3,520
Ahead	Tight	510	570	630	1,020	1,130	1,250	1,520	1,690	1,870	2,030	2,260	2,490
	Std	570	640	700	1,070	1,190	1,310	1,600	1,780	1,970	2,140	2,380	2,620
	Wide	620	690	760	1,230	1,370	1,510	1,850	2,050	2,260	2,460	2,730	3,020
Right	Tight	510	570	630	1,020	1,130	1,250						
	Std	570	640	700	1,070	1,190	1,310						
	Wide	620	690	760	1,230	1,370	1,510						

Table 4-5 - Saturation Flows of Give Way Turns from Minor Arms at Priority Junctions (with no Central Reservation

Turn	Radius	Give Way Turns with No Central Reservation Present											
		1 Lane			2 Lanes			3 Lanes			4 Lanes		
		Poor Vis	Ave Vis	Good Vis	Poor Vis	Ave Vis	Good Vis	Poor Vis	Ave Vis	Good Vis	$\begin{aligned} & \text { Poor } \\ & \text { Vis } \end{aligned}$	Ave Vis	Good Vis
Left	Tight	640	690	730	1,280	1,370	1,460	1,920	2,050	2,190	2,550	2,730	2,910
	Std	720	770	820	1,350	1,440	1,540	2,020	2,160	2,300	2,690	2,880	3,070
	Wide	780	830	880	1,550	1,660	1,760	2,320	2,480	2,640	3,090	3,310	3,520

SELBY DISTRICT TRAFFIC MODEL
Project No.: 70081319 | Our Ref No.: LMVR (Highway)
North Yorkshire County Council and Selby District Council

Turn	Radius	Give Way Turns with No Central Reservation Present											
		1 Lane			2 Lanes			3 Lanes			4 Lanes		
		$\begin{array}{\|l} \text { Poor } \\ \text { Vis } \end{array}$	Ave Vis	$\begin{array}{\|l\|} \text { Good } \\ \text { Vis } \end{array}$	$\begin{array}{\|l} \text { Poor } \\ \text { Vis } \end{array}$	Ave Vis	Good Vis	Poor Vis	Ave Vis	Good Vis	$\begin{aligned} & \text { Poor } \\ & \text { Vis } \end{aligned}$	Ave Vis	$\begin{array}{\|l} \text { Good } \\ \text { Vis } \end{array}$
Ahead	Tight	540	600	660	1,070	1,190	1,320	1,610	1,790	1,970	2,140	2,380	2,630
	Std	620	690	760	1,140	1,270	1,400	1,710	1,900	2,100	2,280	2,530	2,800
	Wide	680	760	830	1,360	1,510	1,660	2,030	2,260	2,490	2,710	3,010	3,320
Right	Tight	540	600	660	1,070	1,190	1,320						
	Std	620	690	760	1,140	1,270	1,400						
	Wide	680	760	830	1,360	1,510	1,660						

Table 4-6 - Saturation Flows (PCUs per hour) Of Merges

	Non-Motorway Priority Merge from Minor Arm						
				3 Lanes		4 Lanes	
	Single Lane	2 Lanes	Incl N'side	No N'side	Incl N'side	No N'side	
Tight	1,530	1,480	4,640	4,750	6,220	6,330	
Std	1,730	1,670	5,240	5,370	7,030	7,150	
Wide	1,850	1,790	5,610	5,740	7,520	7,650	

Motorway Priority Merge from Minor Arm

Gradient	1 Lane N'side	1 Lane Not N'side	2 Lane N'side	2 Lane Not N'side
Uphill	1,910	2,050	3,960	4,100
Flat	1,930	2,060	3,990	4,140
Downhill	1,940	2,070	4,010	4,170

4.5.5. Figure $4-5$ shows an example of a priority junction node coded in SATURN. The turn data displayed are saturation flows in PCUs per hour.

Figure 4-5 - Example Coding: Priority Junction

Signalised Junctions

4.5.6. Signalised junctions within the simulation area required additional characteristics to be coded including:

- Staging plans.
- Cycle times.
- Stage green times; and
- Stage intergreen times.
4.5.7. Traffic signal specifications were obtained from NYCC to derive this data (see Section 3.8). It is only possible to code fixed signal timings in SATURN therefore the supplied green times were used as a starting point and further adjusted during the calibration and validation process (see Section 8.3). This reflects the ability to optimise stages for live traffic conditions through dynamic signal operations such as MOVA and SCOOT.
4.5.8. The saturation flows for signalised junctions were based on calculations presented in TRL Report 67 (Kimber, McDonald and Hounsell) by turning movement (left turn, ahead, right turn), lane width and turning radii. The signalised junction saturation flows can be viewed in Table 4-7. These were
reviewed and adjusted during the calibration and validation process alongside other junction parameters in order to more accurately represent delays and to reflect local site variation.

Table 4-7 - Saturation Flows at Signalised Junctions

Turn	Radius	Single Lane	Non-Single Lane								
			1 lane	2 lanes		3 lanes		4 lanes		5 lanes	
			Incl N'side	Incl N'side	No N'side						
Left	Tight	1,530	1,480	3,060		4,640		6,220			
	Std	1,730	1,670	3,460		5,240		7,030			
	Wide	1,850	1,790	3,700		5,610		7,520			
Ahead	Tight	1,870	2,010	3,870	4,010	5,880	6,020	7,880	8,020	9,890	10,030
	Std	1,980	2,060	3,970	4,110	6,030	6,170	8,080	8,220	10,140	10,280
	Wide	2,070	2,210	4,270	4,410	6,480	6,620	8,680	8,820	10,890	11,030
Right	Tight	1,650	1,600	3,310	3,430	5,030	5,140	6,740	6,850		
	Std	1,800	1,750	3,610	3,740	5,480	5,610	7,350	7,480		
	Wide	1,890	1,830	3,790	3,920	5,740	5,880	7,700	7,830		

Terminology: N'side = Nearside; Std = Standard
4.5.9. Pedestrian crossings (zebra and pelican/puffin) were also represented as signalised junctions within the model, with the red time determined as intergreen and calculated to represent the average crossing time in each modelled period. The assumed crossing times were estimated based on the location of the crossing and the closeness to retail or education establishments. Where crossings were located very close to a junction, the crossing and adjacent roads have been coded as a single signalised junction with movements during each representative phase designed to replicate the permitted real-world movements when a crossing is in use.
4.5.10. Additionally, railway crossings across the Selby District have been modelled as a single signalised junction located on the railway. These were provided by Network Rail for 2019 and all inputs have been amended to be suitably represented in SATURN. Figure 4-6 shows the location of these railway crossings.

Figure 4-6 - Railway Crossings: Selby District

4.5.11. Figure $4-7$ shows an example of a signalised junction node coded in SATURN. The turn data displayed are saturation flows in pcus per hour.

Figure 4-7-Example Coding: Signalised Junction

Roundabouts

4.5.12. To model roundabouts within the simulation area, the following characteristics are required to be coded:

- Entry capacity at each approach (pcus per hour);
- Circulatory capacity (pcus per hour); and
- Total circulatory time (seconds).
4.5.13. Explicit parameters such as entry width, inscribed diameter (ICD) and flare length were used to derive the saturation flows using the Kimber TRL method used for ARCADY. Table 4-8 shows the saturation flows which are ascribed to a roundabout where no inscribed diameter is specified.

Table 4-8 - Roundabout Parameters Based on Number of Lanes and Turn Radius

Radius	Mid-Link Lanes									
	1				2			3		4
	Stop-line Lanes									
	1	2	3	4	2	3	4	3	4	4
Saturation Flow										
Narrow	920	1,370	1,560	2,170	1,810	2,310	2,670	2,730	3,170	3,670
Standard	1,100	1,620	1,800	2,450	2,200	2,760	3,000	3,320	3,750	4,470
Wide	1,380	1,920	2,100	3,250	2,710	3,330	4,010	4,090	4,760	5,510

Circle Time

Narrow	10	10	10	10	15	15	15	17	17	20
Standard	10	10	10	10	15	15	15	17	17	20
Wide	10	10	10	10	15	15	15	17	17	20

Roundabout Capacity

Narrow	1,830	2,560	2,730	3,100	3,470	3,850	4,040	4,380	4,590	4,970
Standard	2,250	2,770	2,910	3,200	3,780	4,120	4,400	4,680	5,000	5,250
Wide	2,310	3,000	3,110	3,590	4,090	4,380	4,600	4,970	5,150	5,520

Roundabout Gap Value

Narrow	20	14	13	12	10	9	9	8	8
Standard	16	13	12	11	10	9	8	8	7
Wide	16	12	12	10	9	8	8	7	7

4.5.14. The values shown in the above table are just indicative and are not actually used as the inscribed diameter for each roundabout will have been specified in every instance. Instead of selecting from a list of values (such as in the case above) the values ascribed to the roundabout are calculated using formulae to which the inputs are the inscribed diameter, the lane width, the number of stop-line and mid-link lanes plus any flare lengths.
4.5.15. Figure $4-8$ shows an example of a roundabout node coded in SATURN.

Figure 4-8-Example Coding: Roundabout

Exploded Roundabouts

4.5.16. The limitation of traditional roundabout coding is that it only applies for smaller sized roundabouts where traffic flow approaching the roundabout is well within capacity or where there is no clear definition of lane marking for any particular movement (i.e., traffic can utilise all lanes on approaches to exit the roundabout). For larger roundabouts, where traffic flows are more significant and/or where lane markings are clearly defined for particular movements, traditional coding is inappropriate to correctly model delay.
4.5.17. Larger roundabouts were therefore coded as a series of priority junctions with major arms on the circulatory sections and minor arms as on approaches to the roundabouts. This coding approach similarly applies if some or all of the entry arms are signalised (i.e., partial or fully signalised exploded roundabout).
4.5.18. Different saturation flows are applied at these 'exploded priority nodes' compared with a typical priority junction since, for example, a left turn off a roundabout generally has a wider turn radius than a left turn into a minor arm, thereby warranting a higher saturation flow.
4.5.19. An example of an exploded roundabout is provided in Figure 4-9. This figure is for illustrative purposes only and does not represent part of the Selby model.

Figure 4-9- Example Coding: Exploded Roundabout

4.6 PUBLIC TRANSPORT SERVICES AND BUS PRIORITY

4.6.1. Bus services are coded into SDSM as pre-loaded demand. This is of particular importance to the peak periods when services will typically have a higher frequency and their impact on traffic flow will be greater in respect of both capacity and network speeds.
4.6.2. In total there were 40 distinct bus services identified across the three modelled periods, however not all services are included in all periods. Services which had a frequency of at least one service per hour were included in the respective period. Section 3.7 details the bus networks and frequencies.
4.6.3. In addition to bus services, bus lanes have also been coded in the model.

4.7 PCU CONVERSION FACTORS

4.7.1. Equivalent trip volumes of different vehicle types will have a varying impact on the network capacity due to the different size of the vehicles. For assignment, the demand is converted into standardised passenger car units (PCUs) which are taken from TAG.
4.7.2. The TAG vehicle-to-PCU factors which will be used for the SDSM are presented in Table 4-9, below. For HGV's, an average PCU factor was calculated using a weighted average based on the respective split between OGV1 and OGV2 from local classified count data.

Table 4-9 - PCU Value by Vehicle Type

Modelled Vehicle Type	TAG Vehicle Type	TAG PCU Factor	Vehicle Split	PCU Values Adopted
Car	Car	1.0	100%	1.0
LGV	LGV	1.0	100%	1.0
HGV	OGV1	1.9	29%	2.61
	OGV2	2.9	71%	
PSV	PSV	2.5	100%	2.5

4.8 GENERALISED COST

4.8.1. Model assignment of trips to the highway network will be undertaken using a standard approach that is based on a 'Wardrop User Equilibrium', which seeks to minimise travel costs for each vehicle type in the network. This is implemented in SATURN through the 'Frank-Wolfe algorithm' employed as an iterative process based on using successive 'all or nothing' iterations which are combined to minimise an 'objective function'. Travel costs are then recalculated after each iteration and compared to those from the previous iteration. The process is terminated once successive iteration costs do not change significantly. This process enables multi-routing between any origin-destination pair.
4.8.2. Traffic routeing is implemented in SATURN through a function of generalised cost. This normalises time, distance and monetary charges into a standard unit.
4.8.3. The function is defined as:

$$
G C=T+\frac{(D \times V O C)+M}{V O T}
$$

where:

- GC	Generalised cost in minutes.
- T	Travel time in units of minutes (including delays and time penalties).
- D	Travel distance in kilometres.
- M	Monetary charges in pence (e.g., toll fares).
- VOT	Value of time in pence per minute (PPM); and
- VOC	Vehicle operating costs in pence per kilometre (PPK).

4.8.4. Note: there are no tolls coded in the base year highway model however this principal would apply for any scheme forecasts which may include tolls, such as CAZ.
4.8.5. Parameters have been derived for each user class from TAG Databook November $2021 \mathrm{v} 1.17^{1}$ and are listed in Table 4-10. This was the latest Databook when the model was created. It should be noted that:

- The average speed assumptions used to derive the PPK values were not based on the average network speeds from a previous assignment, as they were deemed unrealistic due to the A1(M), M62 and A64 influencing the speeds. It was decided that a speed of 52 kph would be applied for all three modelled time periods. This speed was derived using an average of observed speeds over the set of journey time routes.
- A coefficient of 2.3 was applied to the HGV PPM values. This is in line with TAG M3.1 guidance which states that a factor around that order of magnitude is appropriate to be applied to the TAG values to consider the effects of owner choice on routeing.
- The proportion of OGV1 to OGV2 detailed in Table 4-9 was used in the derivation of the PPM PPK values.

Table 4-10-Generalised Cost Parameters

User Class	AM Peak		Inter Peak		PM Peak	
	PPM	PPK	PPM	PPK	PPM	PPK
Car Business	30.92	12.78	31.68	12.78	31.36	12.78
Car Commute	20.73	6.27	21.07	6.27	20.81	6.26
Car Other	14.31	6.27	15.24	6.27	14.98	6.27
LGV	22.41	13.65	22.41	13.65	22.41	13.65
HGV	51.32	43.99	51.32	44.36	51.32	46.09

${ }^{1} \mathrm{https}: / / \mathrm{www}$. gov.uk/government/publications/tag-data-book

5 ZONE SYSTEM DEVELOPMENT

5.1 INTRODUCTION

5.1.1. The model zone system is an intrinsic element of the highway assignment model and defines the geographical areas between which highway trips are loaded onto the network.
5.1.2. TAG Unit M3.1 gives guidance on the specification of the zone system suggesting that the area of detailed modelling should be split up into small zones; the rest of the fully modelled area should be split up into somewhat larger zones; the external area should be split into larger zones again. The SDSTM's zone system has been constructed in line with this guidance.

5.2 MODEL ZONE SYSTEM

5.2.1. A zone system was developed based on the principles that the level of detail should be fine enough to enable detailed modelling within the areas of interest but not too detailed to compromise development and subsequent model run times.
5.2.2. The starting point for the SDSTM zone system was the MND Request Zone sector system used for the mobile phone data collection, based on LSOA or aggregations thereof - see Section 3.2 for a detailed description. It was necessary to disaggregate the Request Zones, in particular:

- Within and around Selby town centre to complement the detailed network coverage, including identification of transport-specific locations such as car parks and PT stations; and
- Within the more rural parts of the wider district primarily for cases of larger Request Zones which covered multiple conurbations with different access points to the network.
5.2.3. The SDSTM zone system has 643 zones, of which 395 are within Selby district. For comparison there were 300 Request Zones, of which 50 were within Selby district (see Section 3.2). Table 5-1 summarises the number of assignment zones by district, and the zone system is illustrated in Figure 5-1, Figure 5-2 \& Figure 5-3.
5.2.4. The locations for development zones will be reviewed prior to forecasting. They will be added into the base year models at that stage to allow pivoting within the variable demand model (VDM).

Table 5-1 - Number of Assignment Zones by District

District	Number of Zones
Selby	395
East Riding of Yorkshire and Hull	29
Doncaster	19
Leeds	42
Wakefield	90
York	24
Rest of GB	44
Total	$\mathbf{6 4 3}$

Figure 5-1 - Selby Urban Area and Surrounding Zone Definitions

Figure 5-2 - Selby District Model Zone Definitions

Figure 5-3 - Buffer and External Area Model Zone Definitions

5.3 CENTROID ZONE CONNECTORS

5.3.1. The loading of traffic onto the network from zones was achieved using centroid connectors at appropriate locations. In line with TAG Unit M3.1 guidance, the number of centroid connectors were kept to a minimum (which will also help to avoid/reduce convergence issues).
5.3.2. Zone connectors should represent 'real' junctions within the highway network. The loading points and types of connectors were determined specifically for each zone within the simulation and buffer areas. For the external zones (outside the study area) the loading points were attached to the appropriate locations at the edge of the network.
5.3.3. For the buffer and external network, the appropriate length of the connector in each case was based on the distance to the mid-point of the zone. A speed limit of 40 kph was then assigned to the zone connectors.

Speed-flow curves were not assigned to the zone connectors as this is not required in SATURN.

6 HIGHWAY MATRIX DEVELOPMENT

6.1 INTRODUCTION

6.1.1. Highway assignment models require representation of travel demand in the form of trip matrices which are loaded on the network (supply) as model zones.
6.1.2. Zones are defined as areas of similar land use and characteristics which would access and egress the modelled network at a similar location. The area of interest will have the greatest zonal detail, becoming more aggregate further from the simulation area.
6.1.3. As described in Section 3.2, MND was collected as the primary data source within a bespoke zone system, referred to as the MND Request Zone system. This was the primary data source for development of the SDSTM demand matrices.
6.1.4. The development of the trip matrices from the various data sources is described, including how the data sets were utilised for various sectors of the matrices and combined to form the 'prior' matrices.
6.1.5. The current chapter describes the highway matrix development process, including application of the MND and other data sources through to generating the prior matrices for matrix calibration. This process is summarised in Figure 6-1 and is structured as follows:

- Model zone system.
- Overview of MND matrix development.
- Verification of MND collected.
- Development of MND matrices.
- Synthetic matrix development.
- Matrix merging; and
- Prior matrices.

Figure 6-1 - Prior Matrix Development Process

6.2 OVERVIEW OF MND MATRIX DEVELOPMENT

6.2.1. The MND matrix development process is illustrated in Figure 6-2. The flowchart summarises the processing undertaken. Data was received from Telefonica at the most detailed level that can be supported by the MND processing algorithms.
6.2.2. The MND data was supplied by different variables, using the following indexing system.

- Mode:
- Total Motorised Road (Car, Bus)
- HGV
- Period:
- AM peak (07:00-10:00)
- Inter-peak (10:00-16:00)
- PM peak (16:00-19:00)
- OP peak (19:00-7:00)
- Purpose:
- Outbound Home-Based Work
- Inbound Home-Based Work
- Outbound Home-Based Other
- Inbound Home-Based Other
- Non-Home-Based Work
- Non-Home Based Other
6.2.3. As highlighted above, HGVs were provided and verified seperately by Telefonica. This is due to the fact that HGVs are not considered to be consistent TEMPro and NTS datasets. Disaggregation related to mode, trip purpose and zoning, is illustrated in Figure 6-3. Other actions and adjustments arose as a result of the verification checks and early matrix calibration respectively. The outcomes of the verification checks are summarised in Section 6.3. Section 6.4 describes each of the processing stages undertaken.
Figure 6-2 - MND Matrix Development Process

Figure 6-3-MND Disaggregation Requirements

6.3 VERIFICATION OF MND

6.3.1. Collection of MND was summarised in Section 3.2. The verification checks are extensively detailed in the MND Verification Report, attached as Appendix B.
6.3.2. Key conclusions from that report are summarised as follows:

- All the zones within and outside the study area have trips.
- For motorised trips (excluding HGV), most trips in the matrix are the Internal from/to external trips (48%). Long distance trips between the external regions represent a significant 39% whilst the intra-study area trips make up a small proportion (around 14\%), of the travel demand from Selby district.
- As regard HGV, most trips in the matrix are the external (around 63\%). Intra-study area trips make up around 33%.
- The comparison with TEMPro total trips showed that the MND matrix is significantly underrepresenting the total amount of trips in the study area.

Table 6-1 - MND Verifications: Average Weekday Total Two-Way Trips - All Modes

	All Modes		
	MND	TEMPro	δ Diff.
Selby District	171,993	287,785	0.60

- The TLD analysis showed that a consistent part of this gap is produced by a shortfall in short distance trips for all purposes combined. These gaps will be infilled using the synthetic matrix;

Figure 6-4 - MND Verifications: TLD Comparison - All purposes and all modes

- The purpose split between 'Work' and 'Other' in the MND dataset closely reflected the purpose split in TEMPro when education and work were defined together in TEMPro. The matrix build will initially assume that the 'Work' category also contains education trips.

Table 6-2 - MND Verifications: Work/Other Split Proportions

Purpose	MND	TEMPro
Work (HB and NHB)	0.33	0.38
Other (HB and NHB)	0.67	0.62

- In the MND the category Other includes "employer business" and 'Other' trips. A method will be required to segment the MND into commute, business and other user classes.
- Other non-car highway trips -LGVs and bus - will need to be subtracted from the motorised component; and
- The analysis of the HGV matrix showed that the MND matrix is underrepresenting the HGV trips in the study area. Therefore, additional data will be required to fill these gaps in the matrix.

6.4 DEVELOPMENT OF MND MATRICES

6.4.1. This section describes the process stages from Figure 6-2 in order.

Step 1 - Verification

6.4.2. The verification is detailed above.

Step 2 - Subtract LGVs

6.4.3. This step was a known requirement based on the MND specification. Figure $6-5$ summarises the steps followed to extract the LGV trips from the MND matrix.

Figure 6-5 - LGVs extraction process

The MND received from Telefonica does not disaggregate LGVs from the other highway motorised traffic (i.e., cars and buses). As shown in Section 6.2, HGV trips were provided in a separate matrix.

- The MCC data was used to derive the LGV proportions and converted to persons using occupancy factors from TAG.

Table 6-3-Car/LGV Occupancy Factors

Purpose	Factor
Average Car	1.56
LGV	1.16

- The model area was divided in areas to calculate specific proportions
- The derived splits were applied to the MND to extract the LGV component
- These LGVs matrices in person trips were used to isolate GV from the MND matrix
- The matrices were converted back to vehicle. Table 6-4 below presents the split after GV trips extracted from the MND. At this stage the MND still includes bus trips.
Table 6-4 - Mode split after the extraction of the LGVs (people)

Vehicle Class	AM peak	Inter peak	PM peak
Car+Bus	86%	85%	91%
LGV	14%	15%	9%

いい|

Step 3 - Bus Trips Removal

6.4.4. The final remaining mode subtraction was to remove bus demand (persons) from the highway demand (person) trip matrix.
6.4.5. The MND received from Telefonica provides bus passengers and car travellers combined within the motorised mode segment. Therefore, an independent demand data source for bus passengers was required in order to split the motorised MND (post GV removal) into car travellers and bus passengers.
6.4.6. Target overall proportions for bus mode share (against car) were derived from TEMPro 7.2, which was the latest version dataset when building the matrices and Datashine Commute datasets (https://commute.datashine.org.uk) by purpose for the whole study area. These proportions were applied to the MND to extract the bus component of the matrix. It must be noted that TEMPro data was extracted at MSOA level for the base year of 2019 and Datashine Commute data uses 2011 census data. Although the census data is from 2011, 2021 census data had not yet been released when creating the matrices.
6.4.7. Table $6-5$ shows mode share resulting from the process.

Table 6-5 - Bus Mode Share (versus Car) by MND purpose

Purpose	AM peak	Inter peak	PM peak
Home Based 'Work'	5.8%	5.9%	5.7%
Home Based 'Other'	5.9%	5.7%	5.8%
Non-Home Based 'Work'	2.0%	2.0%	2.0%
Non-Home Based 'Other'	2.0%	2.0%	2.0%

Step 4 - Produce Car Purpose Matrices for Commute, Business and Other

6.4.8. As stated earlier, the MND purpose split was categorised as 'work' (i.e., commuting) or 'other' (i.e. business and other). However, the verification tests suggested that education trips may be included within the 'work' category. A 'work' location in MND was identified through frequency and time of day analysis. Since an education trip may be undertaken frequently by parents through pick up and drop off, this is not inconsistent with how 'work' trips are inferred. Based on the verification evidence, education trips were assumed to be contained within 'work'. Therefore, two purpose splits were required:

- 'Work' to be segmented into commuting and education (with education that will be added into other for assignment user class); and
- 'Other to be segmented into other and employer business.

Purpose split varies by distance, the disaggregation was undertaken using the NTS dataset for North Yorkshire that was used to develop a specific trip length distribution for commute/education and business/other. The distributions were weighted by their respective volume from TEMPro to develop a final purpose split varying by distance and then applied to the MND. Figure 6-6 to Figure $6-8$ show the Trip Length Distribution of the MND after the purpose split for each time period.

Figure 6-6 - Trip Length Distribution (5km bands) - AM

Figure 6-7 - Trip Length Distribution (5km bands) - IP

Figure 6-8 - Trip Length Distribution (5km bands) - PM

Step 5 - Convert to model zone
6.4.9. The model zone system consisted of 643 zones compared to 300 MND Request Zones. The Request Zones were LSOA (or aggregations thereof) as the lowest spatial level at which Telefonica were confident to provide the MND data, whereas the model zone system is more detailed than LSOA, particularly in the urban area.
6.4.10. MND demand at the request zone system was therefore disaggregated to the model zone system using the land-use data (i.e. population and employment) produced from CTripEnd. CTripEnd was used to generate the trip ends at model zone level as part of the synthetic matrix development.
6.4.11. As an input, CTripEnd takes a database of socio-demographic data at MSOA level. Population and employment datasets were downloaded from the census. Production and attraction weightings were derived for all zones within the MND sectors using census datasets for population and employment. These are summarised in Table 6-6.

Table 6-6-Zones Disaggregation Weightings

Purpose	Direction	Production Weight	Attraction Weight
	From Home	Population (16-74)	Workday Population
	To Home	Workday Population	Population (16-74)
	Non-Home Based	Workday Population	Workday Population
Education/ Other	From Home	Population (16-74)	Workday Population
	To Home	Workday Population	Population (16-74)
	Non-Home Based	Workday Population	Workday Population

6.4.12. The splitting factors were derived by using the census data for smaller census geographies where available. However, in some cases the zone splits could not be implemented using output area (or other smaller) boundaries. In particular, within the urban area where the zoning is most dense and some zones correspond to specific attractors, e.g., car parks, shopping centre, PT stations. In those cases, the same principals were applied but this relied on inspection.
6.4.13. The zonal trip ends generated by CTripEnd, by time period and trip purpose, were used to derive splitting factors to convert the MND Request Zone data to model zone.

Step 6 - Period to Peak Hour

6.4.14. As per Section 2.5 the highway assignment modelled hours are:

- AM peak hour 08:00-09:00.
- Inter peak average hour 10:00-16:00; and
- PM peak hour 17:00-18:00.
6.4.15. The peak-to-period factors were derived from the observed ATC counts. The 'inter peak period to average hour' divisor was 6 . The global peak period to modelled hours divisors were:
- AM peak: 2.71
- PM peak: 2.65

Step 7 - Convert from Person Trips to Car Trips by Purpose

6.4.16. Conversion from person trips into vehicle trips was undertaken through dividing by occupancy factors. The factors applied are listed in Table 6-7 and were derived from TAG.

Table 6-7- Occupancy Factor by Car Purpose

Purpose	Factor
Business	1.14
Commuting	1.15
Other	1.79

Step 8 - Convert GVs from Vehicles to PCUs

6.4.17. The PCU factors, shown in Table 6-8, were applied to goods vehicle matrices to convert vehicles/h into pcu/h. Derivation of the PCU conversion factors was detailed in Section 4.7.

Table 6-8 - PCU Factors

UC	Factor
LGV	1.00
HGV	2.61

6.4.18. Table 6-9 summarizes the totals of the MND matrix by purpose and period.

Table 6-9 - MND Matrix summary by Purpose and Period (pcu/h)

User Class	AM peak	Inter peak	PM peak
Business	7,870	4,658	6,312
Commuting	26,126	7,263	26,819
Other	19,344	24,461	29,531
LGV	10,140	8,598	7,739
HGV	12,664	12,499	7,670
Total	$\mathbf{7 6 , 1 4 4}$	57,479	$\mathbf{7 8 , 0 7 1}$

6.5 SYNTHETIC MATRIX DEVELOPMENT

6.5.1. Following from the verification tests, and as expected with MND (see Section 6.3), a set of synthetic matrices were required to be developed and merged with the MND matrix to address the short distance trips within the MND data, for which the verification tests had shown were underrepresented, which is commonly the case in many applications of MND. It is noted that the synthetic demand is developed for car user classes only, not for freights.

The process to construct the synthetic matrices is illustrated in Figure 6-9.

Figure 6-9 - Synthetic Matrix Development Process

Specification

6.5.2. The synthetic matrices were developed through calibrating a trip distribution to observed data. The shape of the observed data will therefore determine the trip distribution in the resultant matrices. Observed data was taken from the National Travel Survey (NTS) which contains travel diary records including origin area, destination area, trip purpose, mode, distance travelled, and time taken.
6.5.3. Trip making characteristics will vary for different localities depending on factors including area type, quality of existing highway network against public transport availability and proximity to other urban centres which may have high levels of inter-connectivity.
6.5.4. It is preferable to take observed data at the most local spatial level defined and available - in this case it was to and within North Yorkshire. Exact locations are not known. Assuming a representative sample, the North Yorkshire data would have the highest number of records in York, however with a lot of interaction between Leeds and York. North Yorkshire is a highly interconnected polycentric area and so will be more representative than expanding the spatial area to, for example, Yorkshire \& The Humber as a Government region.

Input Data
6.5.5. The following inputs were prepared for use in the synthetic matrix build:

- Trip ends: 24 -hour productions and attractions extracted from TEMPro at model zone level for an average weekday to match the specification, see above, by period, assignment purpose and direction (home-based or non-home based).
- Cost skims: distance, time and toll skims at 24-hour level by assignment purpose from a congested assignment to ensure representation of delays were included in the costs.
- Values of time and vehicle operating costs for each assignment purpose and period from TAG Databook - these were used to combine the cost skims into a single matrix of generalised cost by purpose; and
- Observed daily trip length distribution profiles from NTS for North Yorkshire by purpose and direction (home based, or non-home based).

Gravity Model Application

6.5.6. The distribution of origin productions to destination zones was undertaken using a gravity model approach. A bespoke application was developed with inbuilt matrix, distribution and 'FRATAR' (i.e., furness) applications conducting an iterative search on the parameters for the chosen deterrence function. This optimises the trip length distribution based on the zonal trip ends and generalised costs, producing the closest fit to the observed trip length distribution.
6.5.7. In a trip distribution context, the zonal attraction is proportional to the product of the productions from the origin zone and the attractions to the destination zone. The divisor is taken to be a more sophisticated function of generalised cost rather than simply distance - in this instance the Lognormal and Tanner.
6.5.8. One of two different distribution functions was used to determine the attractiveness from zone i to zone $j\left(F_{i j}\right)$ by purpose: the Tanner function or the Log-normal function. The choice between the two functions depended on the shape of the observed distribution, to decide which function fits best in each case.
6.5.9. The log-normal function with some fitted purpose-specific parameters, μ and σ is described as follows:

$$
F_{i j}=\frac{1}{x \sigma \sqrt{2 \pi}} \exp \left[-\frac{(\ln x-\mu)^{2}}{2 \sigma^{2}}\right], x>0
$$

where x is the generalised cost of travel between zone i to zone j.
6.5.10. The Tanner function with some fitted purpose-specific parameters, x_{1} and x_{2} is described as follows:

$$
F_{i j}=c_{i j}^{x_{1}} \exp \left(c_{i j}^{x_{2}}\right), c_{i j}>0
$$

6.5.11. Define:

- P_{i} to be the number of productions for zone i; and
- A_{i} to be the number of attractions for zone j.

The number of trips from zone i to zone j in the gravity model is given by:

$$
t_{i j}=P_{i} \frac{A_{j} F_{i j}}{\sum_{x} A_{x} F_{i x}} .
$$

6.5.12. The application was run for seven purposes in one 24 -hour time-period, generating seven P / A synthetic matrices. The calibrated parameters are shown in Table 6-10.

Table 6-10 - Gravity Model Calibrated Deterrence Function Parameters

Time Period	Demand Segment	Function	mu (μ) or x_{1}	sigma (σ) or x_{2}	R2
24 H	Home Based Business	Lognormal	1.1	1.2	0.998
	Home Based Commute	Lognormal	1.1	1.7	0.962
	Home Based Education	Lognormal	0.8	0.3	0.985
	Home Based Other	Lognormal	1.1	1.0	0.998
	NHB Business	Lognormal	1.6	1.3	0.996
	NHB Education	Lognormal	0.2	1.4	0.998
	NHB Other	Lognormal	1.6	1.0	0.995

6.5.13. Appendix C provides supplementary reporting of the gravity model calibration including observed and estimated average trip length and trip length distribution comparisons.

Conversion to O/D

6.5.14. To convert the home-based matrices into O/D format, for each trip purpose, the calibrated P/A (outbound) matrices were converted from 24-hour level into each time-period and then transposed to generate the respective return home A/P (inbound) trips. The inbound matrix for each period was then derived as the sum of a proportion of each of the A/P matrices using time-period trip return probability matrices derived from NTS data for North Yorkshire. The factors are tabulated in Table 611 and Table 6-12.

Table 6-11 - Synthetic Matrix 24H to Time Period Factors

Purpose	AM	IP	PM	OP
Home Based Business	0.51	0.23	0.14	0.13
Home Based Commute	0.61	0.17	0.05	0.17
Home Based Education	0.69	0.25	0.05	0.01
Home based Other	0.20	0.50	0.20	0.11
NHB Business	0.21	0.63	0.11	0.05
NHB Education	0.29	0.54	0.17	0.00
NHB Other	0.12	0.59	0.21	0.07

*Row totals may not sum to 1 due to rounding in the presented values
Table 6-12 - Synthetic Matrix Trip Return Probabilities

		Inbound				
		IP	PM	OP		
Out- bound	AM	0.24	0.55	0.17	0.05	
	IP	0.00	0.70	0.25	0.05	
	PM	0.00	0.00	0.52	0.48	

*Row totals may not sum to 1 due to rounding in the presented values

Conversion to Assignment Matrices

6.5.15. The peak hours given above, as used for the MND matrices, were used to convert the peak period matrices into peak hour (AM and PM) and average hour (IP) for assignment.
6.5.16. The occupancy factors applied to the synthetic matrices to convert from person trips into vehicle trips are listed in Table 6-13.

Table 6-13-Synthetic Matrix Occupancy Factors

Occupancy	AM	IP	PM	OP
Business	1.13	1.16	1.15	1.17
Commute	1.13	1.15	1.14	1.15
Other	1.71	1.82	1.79	1.79

(TAG Databook July 2021 Table A1.3.3 ‘Occupancy per Vehicle Kilometre travelled)
6.5.17. The resultant matrices were specified by assignment purpose, by time-period but disaggregated by direction (from-home, to-home and non-home based) for the matrix merge which required differentiation by direction. The matrix totals by time period and purpose are reported in Table 6-14.

Table 6-14-Synthetic Matrix Totals

Purpose	AM	IP	PM
Home-Based Business - Inbound	583	2,287	5,899
Home-Based Business - Outbound	7,375	1,449	2,164
Home-Based Commuting - Inbound	1,954	11,212	48,443
Home-Based Commuting - Outbound	52,373	6,545	4,756
Home-Based Education - Inbound	6,381	6,327	3,340
Home-Based Education - Outbound	16,989	2,612	1,380

Purpose	AM	IP	PM
Home-Based Other - Inbound	6,090	22,547	30,704
Home-Based Other - Outbound	22,973	24,252	23,288
Non-Home-Based Business	3,927	5,227	2,221
Non-Home-Based Education	1,238	960	713
Non-Home-Based Other	4,917	10,190	8,772
Total	$\mathbf{1 2 4 , 8 0 1}$	$\mathbf{9 3 , 6 0 7}$	$\mathbf{1 3 1 , 6 8 0}$

6.6 GV MATRIX DEVELOPMENT

6.6.1. As referenced in Section 3.2 the MND received from Telefonica does not disaggregate goods vehicles (GVs) from other highway motorised traffic.
6.6.2. Therefore, an independent demand data source for GVs was required in order to develop absolute GV prior matrices which could also be used to subtract GV trips from the highway motorised MND.
6.6.3. The MND data provides the HGV data as a separate matrix however it is presented at a LSOA/ MSOA. When this data is disaggregated at the zone level there is a possibility that it may not reflect the travel patterns at zonal level. Similarly, the LGV data is derived from motorised demand using a global factor which might not reflect the demand accurately.
6.6.4. It was agreed with SDC and NYCC to approach TfN to request copy of the HGV matrices from the North Highway Assignment Model (NoHAM) model. The NoHAM freight demand has been calibrated using data from GBFM. Hence the combination of the two datasets will provide better demand distribution which can be used to infill the Selby model matrices as required.
6.6.5. The following points describe how this data was rebased and rezoned for use in the SDSTM.
6.6.6. The matrices were rebased from 2018 to 2019 (BSTM base year) using appropriate growth factors. This was considered proportionate given the small period between the model base years. The factors were:

- LGV: 1.01; and
- HGV: 1.01.
6.6.7. The matrices were rezoned to the SDSTM zone system. This generally consisted of disaggregating NoHAM zones within Selby District and aggregating NoHAM zones outside of the study area.
6.6.8. The following adjustments were made to the rezoned NoHAM matrices:
- Trips between zone pairs that did not interact with the study area were removed including:
- external intra-zonal trips.
- external intra-sector inter-zonal trips.
- External inter-sector trips. Trips between these adjacent sector pairs would not enter the study area.
- The matrices were adjusted with a 10% uplift following comparison of the NoHAM GV matrices against observed GV count data.
- More specific comparisons resulted in the following adjustment factors being applied: LGV - 1.00, $0.92,1.10$ (AM, IP, PM); HGV - $0.75,0.68,0.55$. These factors were derived based on validation results on the Selby District cordon.
- The SDSTM prior GV matrices were derived by blending the adjusted NoHAM GV matrices with the MND GV matrices using a 50:50 blending ratio. These were then subtracted from MND.

6.7 MATRIX MERGING

6.7.1. The matrix merge process was to combine the two sources of demand data:

- MND matrices; and
- Synthetic matrices.
6.7.2. The process is summarised in Figure 6-19, starting from the processed MND car matrices.
6.7.3. In line with TAG M2.2 guidance, synthetic matrices were used to blend short distance trips accounting for a shortfall within MND. The implementation and parameters for the blending process were tested throughout the matrix development and calibration process through reviewing the prior matrices against the reporting of the prior matrix validation to screenlines and cordons (Section 9) and the impacts of matrix estimation statistics (Section 9.2).
6.7.4. Analysis of the MND trip length distribution found that this shortfall was occurring for all car user classes, particularly below about 15 km . A blending criterion of 100% synthetic trips within the bound $0-15 \mathrm{~km}$ was adopted, with 100% MND trips adopted for distances larger than 15 km . Figure $6-10$ to Figure 6-18 shows the trip length distribution comparison between the synthetic and MND matrices and was used to determine the point at which the MND matrix became larger than the Synthetic. Only car user classes have been analysed, as the LGV and HGV matrices are derived from alternative data sources.

Figure 6-10 - MND vs Synthetic Trip Length Distribution: AM Business

Figure 6-11 - MND vs Synthetic Trip Length Distribution: AM Commute

Figure 6-12 - MND vs Synthetic Trip Length Distribution: AM Other

Figure 6-13 - MND vs Synthetic Trip Length Distribution: IP Business

Figure 6-14 - MND vs Synthetic Trip Length Distribution: IP Commute

Figure 6-15 - MND vs Synthetic Trip Length Distribution: IP Other

Figure 6-16 - MND vs Synthetic Trip Length Distribution: PM Business

Figure 6-17 - MND vs Synthetic Trip Length Distribution: PM Commute

Figure 6-18 - MND vs Synthetic Trip Length Distribution: PM Other

Figure 6-19-Matrix Merging Process

6.8 PRIOR MATRICES

6.8.1. Section 3.1.2 described the application of count data for calibration and validation, with reference to emerging matrix building guidance which recommends that data may be used firstly as validation, and then incorporated into calibration to refine the model.
6.8.2. The matrix merging process created the initial prior matrices, considering the screenline reporting of the prior matrix validation to screenlines and cordons (Section 9) and the impacts of matrix estimation statistics (Section 9.2).
6.8.3. Prior to undertaking the matrix estimation, localised adjustments, primarily within the urban area, were applied. This was in line with the principal of integrating data into calibration to refine the model, and prior to full use of the data in matrix estimation and forms a part of the matrix calibration.
6.8.4. For cars, the refinements capture uncertainty around the expansion of MND sample data to population. For GVs, this reflected localised uplift of volumes given that the GV matrices are a blend of MND and NoHAM GV matrices.
6.8.5. This generated the prior matrices, with a matrix assignment validation reported in Section 9.2.

Table 6-15 - Merged Prior Matrix Summary by User Class and Period (pcu/hr)

User Class	AM Peak	Inter Peak	PM Peak
Business	11,705	7,632	9,237
Commuting	51,823	15,567	51,544
Other	61,111	66,768	69,858
LGV	18,359	15,080	14,304
HGV	7,978	7,272	4,255
Total	$\mathbf{1 5 0 , 9 7 7}$	$\mathbf{1 1 2 , 3 1 9}$	$\mathbf{1 4 9 , 1 9 9}$
Note: Totals may not sum exactly due to rounding.			

6.9 PRIOR MATRIX ASSIGNMENTS

6.9.1. The derived matrices were assigned to networks and reviewed at a screenline level to determine performance against model validation criteria. The high-level statistics for screenline performance and link flow performance are presented below.
6.9.2. The validation prior matrix assignments for all 26 screenlines and cordons (Figure 3-8 and Figure 39) are reported in Table 6-16. This shows that modelled flows for well over half of the screen lines in each time period are within 5% or GEH < 4 compared to the observed flow data pre-matrix estimation, and nearly all are either within, or close to that threshold. In all cases, the results are equivalent or stronger for 'all vehicles' than 'cars'.
6.9.3. The performance for the model's all 788 link flow volumes (
6.9.4. Figure $3-10$) is reported in Table 6-17. This shows that over 80% of link flows are within criteria prematrix estimation. There is a slightly stronger validation for 'cars' than 'all vehicles at a link level. It must be noted that some counts did not have inter-peak data, so the number of links reduces to 728.
6.9.5. The trip matrices have been calibrated against the TAG criteria set out in .
6.9.6. The decision to proceed with these prior matrices into the final run of matrix estimation was based on the prior matrix validation, the calibrated matrix assignment results and the significance of the impacts from matrix estimation in order to achieve the calibrated matrix assignment results. Sections 9 and 9.2 respectively report on the latter two cases.
6.9.7. The reporting of the prior matrix validation at this point is in line with the approach for using data for calibration and validation in this model development that was set out previously in Section 3.11.

Table 6-16 - Prior Matrix Screenline and Cordon Performance

| Measure | All Vehicles | | | Cars | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | AM Peak | Inter Peak | PM Peak | AM Peak | Inter Peak | PM Peak |
| Screenlines and Cordons (26) | 73% | 92% | 73% | 65% | 73% | 73% |
| Within 5\% or GEH <4 | 96% | 100% | 96% | 96% | 100% | 96% |
| Within 10% or GEH < 7.5 | 96 | | | | | |

Table 6-17-Prior Matrix Link Flow Performance

Measure (788 counts)	All Vehicles			Cars		
	AM Peak	Inter Peak	PM Peak	AM Peak	Inter Peak	PM Peak
Pass Criteria 1	81%	83%	79%	86%	90%	83%
Pass Criteria 2	71%	74%	69%	75%	78%	71%
Pass TAG	$\mathbf{8 3 \%}$	$\mathbf{8 4 \%}$	$\mathbf{8 0 \%}$	$\mathbf{8 7 \%}$	$\mathbf{9 0 \%}$	$\mathbf{8 3 \%}$

6.9.8. Table 6-18 to Table 6-21 shows the comparison between the modelled flows across all screenlines and cordons against the observed flows as a way of assessing the overall matrix fit to the observed data. This is shown at 12 hour level and has been split into all vehicles, cars, LGVs and HGVs.
6.9.9. The results show that at a total level across the whole model, the difference between observed and modelled flows in no greater than 8% across all vehicle types. It must also be noted that at a total vehicle level there very little change at a total screenline level. For the screenlines that have the largest changes, for example Screenline North-South West, the largest GEH value is 7.4 for the Soutbound direction in the AM. This would be considered a 'near pass' in the above criteria and has been deemed reasonable for a prior matrix assignment,
6.9.10. Additional reporting of the screenline and cordon verification by time period is provided in Appendix E including verification for cars separately.

Table 6-18 - Prior Matrix Assignment Performance - Screenline/Cordon Total - All Vehicles

	Observed Flow $(v e h / h)$	Modelled Flow $(v e h / h)$	Diff	\% Diff

Screenline/ Cordon

Outer Cordon Inbound	33,858	33,755	-102	-0.3\%
Outer Cordon Outbound	33,765	33,915	150	0.4\%
Tadcaster Cordon Inbound	17,305	17,690	385	2.2\%
Tadcaster Cordon Outbound	17,328	17,772	443	2.6\%
Sherburn Cordon Inbound	5,349	5,102	-248	-4.6\%
Sherburn Cordon Outbound	5,364	5,249	-115	-2.1\%
Eggborough Cordon Inbound	5,967	5,340	-627	-10.5\%
Eggborough Cordon Outbound	5,975	5,385	-590	-9.9\%
Screenline North-South West NB	3,752	3,923	170	4.5\%
Screenline North-South West SB	3,474	4,150	676	19.4\%
Screenline North-South North NB	20,409	21,383	974	4.8\%
Screenline North-South North SB	20,375	20,803	428	2.1\%
Screenline North-South Central NB	18,078	18,479	401	2.2\%
Screenline North-South Central SB	17,764	18,313	549	3.1\%
Screenline East-West East EB	2,990	2,811	-179	-6.0\%
Screenline East-West East WB	3,170	2,859	-311	-9.8\%
Screenline East-West Central EB	11,341	10,508	-833	-7.3\%
Screenline East-West Central WB	11,028	9,967	-1,060	-9.6\%
Selby Outer Cordon Inbound	8,599	8,408	-191	-2.2\%

Selby Outer Cordon Outbound	7,856	7,945	89	1.1%
Selby North-South NB	6,794	6,663	-131	-1.9%
Selby North-South SB	6,549	6,525	-24	-0.4%
Selby East-West EB	2,580	2,406	-175	-6.8%
Selby East-West WB	2,370	8,203	-166	$-\mathbf{- 7 . 0 \%}$
Selby Town Centre Cordon Inbound	8,596	$\mathbf{8 , 1 6 7}$	-429	$-\mathbf{- 5 . 0 \%}$
Selby Town Centre Cordon Inbound	$\mathbf{8 , 1 7 4}$	$\mathbf{7 , 9 6 6}$	-208	-2.5%
Total	$\mathbf{2 8 8 , 8 0 9}$	$\mathbf{2 8 7 , 6 8 6}$	$\mathbf{- 1 , 1 2 4}$	$\mathbf{- 0 . 4 \%}$

Table 6-19 - Prior Matrix Assignment Performance - Screenline/Cordon Total - Cars

	Observed Flow $(\mathrm{veh} / \mathrm{h})$	Modelled Flow $(\mathrm{veh} / \mathrm{h})$	Diff	\% Diff

Screenline/ Cordon

Outer Cordon Inbound	27,506	27,285	-221	-0.8%
Outer Cordon Outbound	27,287	27,366	79	0.3%
Tadcaster Cordon Inbound	13,995	14,035	39	0.3%
Tadcaster Cordon Outbound	13,997	14,102	105	0.7%
Sherburn Cordon Inbound	4,346	4,056	-290	-6.7%
Sherburn Cordon Outbound	4,386	4,176	-210	-4.8%
Eggborough Cordon Inbound	4,801	4,286	-515	-10.7%
Eggborough Cordon Outbound	4,808	4,335	-473	-9.8%
Screenline North-South West NB	3,081	3,269	189	6.1%
Screenline North-South West SB	2,817	3,354	537	19.1%

Screenline North-South North NB	14,694	16,286	1,591	10.8%
Screenline North-South North SB	14,605	15,714	1,109	7.6%
Screenline North-South Central NB	13,973	14,675	702	5.0%
Screenline North-South Central SB	13,792	14,477	686	5.0%
Screenline East-West East EB	2,437	2,310	-128	-5.2%
Screenline East-West East WB	2,613	2,402	-212	-8.1%
Screenline East-West Central EB	8,028	7,704	-325	-4.0%
Screenline East-West Central WB	7,775	7,415	-359	-4.6%
Selby Outer Cordon Inbound	7,300	7,519	219	3.0%
Selby Outer Cordon Outbound	6,613	7,035	423	6.4%
Selby North-South NB	5,762	5,819	57	1.0%
Selby North-South SB	5,571	5,568	-3	0.0%
Selby East-West EB	2,240	2,044	-196	-8.7%
Selby East-West WB	2,037	1,885	-152	-7.5%
Selby Town Centre Cordon Inbound	7,699	7,541	-158	-2.1%
Selby Town Centre Cordon Inbound	7,279	7,335	55	0.8%
Total	$\mathbf{2 2 9 , 4 4 2}$	$\mathbf{2 3 1 , 9 9 2}$	$\mathbf{2 , 5 5 0}$	$\mathbf{1 . 1 \%}$

Table 6-20 - Prior Matrix Assignment Performance - Screenline/Cordon Total - LGVs

	Observed Flow (veh/h)	Modelled Flow (veh/h)	Diff	\% Diff

Screenline/ Cordon

Outer Cordon Inbound	4,417	4,438	21	0.5\%
Outer Cordon Outbound	4,461	4,473	11	0.3\%
Tadcaster Cordon Inbound	2,286	2,629	343	15.0\%
Tadcaster Cordon Outbound	2,289	2,642	353	15.4\%
Sherburn Cordon Inbound	615	629	15	2.4\%
Sherburn Cordon Outbound	617	632	14	2.3\%
Eggborough Cordon Inbound	793	625	-169	-21.3\%
Eggborough Cordon Outbound	787	630	-156	-19.9\%
Screenline North-South West NB	511	451	-59	-11.6\%
Screenline North-South West SB	495	550	56	11.3\%
Screenline North-South North NB	3,045	3,096	52	1.7\%
Screenline North-South North SB	3,105	2,953	-153	-4.9\%
Screenline North-South Central NB	2,417	2,090	-327	-13.5\%
Screenline North-South Central SB	2,346	1,997	-349	-14.9\%
Screenline East-West East EB	391	327	-64	-16.3\%
Screenline East-West East WB	394	330	-64	-16.3\%
Screenline East-West Central EB	1,664	1,404	-260	-15.6\%
Screenline East-West Central WB	1,605	1,411	-194	-12.1\%
Selby Outer Cordon Inbound	1,049	641	-408	-38.9\%

Selby Outer Cordon Outbound	1,001	636	-365	-36.5%
Selby North-South NB	778	568	-209	-26.9%
Selby North-South SB	731	567	-164	-22.4%
Selby East-West EB	265	199	-66	-24.9%
Selby East-West WB	252	195	-57	-22.7%
Selby Town Centre Cordon Inbound	827	428	-399	-48.2%
Selby Town Centre Cordon Inbound	$\mathbf{3 7 , 9 5 5}$	$\mathbf{3 4 , 9 6 3}$	$\mathbf{- 2 , 9 9 2}$	$\mathbf{- 7 . 9 2 \%}$
Total		-396	-48.5%	

Table 6-21 - Prior Matrix Assignment Performance - Screenline/Cordon Total - HGVs

Screenline/ Cordon

Outer Cordon Inbound	1,935	2,032	97	5.0%
Outer Cordon Outbound	2,017	2,077	60	3.0%
Tadcaster Cordon Inbound	1,023	1,026	3	0.3%
Tadcaster Cordon Outbound	1,043	1,028	-15	-1.4%
Sherburn Cordon Inbound	389	416	28	7.2%
Sherburn Cordon Outbound	360	441	81	22.5%
Eggborough Cordon Inbound	381	429	56	15.0%
Eggborough Cordon Outbound	161	200	39	10.2%
Screenline North-South West NB	163	246	41	25.2%
Screenline North-South West SB			83	50.7%

Screenline North-South North NB	2,670	2,001	-669	-25.1\%
Screenline North-South North SB	2,665	2,136	-529	-19.8\%
Screenline North-South Central NB	1,688	1,714	26	1.5\%
Screenline North-South Central SB	1,627	1,838	212	13.0\%
Screenline East-West East EB	162	175	12	7.7\%
Screenline East-West East WB	163	128	-35	-21.6\%
Screenline East-West Central EB	1,648	1,400	-249	-15.1\%
Screenline East-West Central WB	1,648	1,141	-507	-30.8\%
Selby Outer Cordon Inbound	250	247	-3	-1.1\%
Selby Outer Cordon Outbound	243	275	32	13.1\%
Selby North-South NB	254	275	21	8.4\%
Selby North-South SB	247	390	143	58.0\%
Selby East-West EB	76	163	87	114.3\%
Selby East-West WB	81	124	43	53.9\%
Selby Town Centre Cordon Inbound	70	198	128	184.3\%
Selby Town Centre Cordon Inbound	77	209	133	173.0\%
Total	21,413	20,731	-682	-3.2\%

7 HIGHWAY ASSIGNMENT PROCESS

7.1 INTRODUCTION

7.1.1. This chapter details the highway assignment process including:

- Generalised costs.
- TAG convergence measures.
- Convergence parameters in SATURN; and
- Assignment convergence.
7.1.2. The SDSM has been constructed in the SATURN modelling suite using an assignment process based upon Wardop's Equilibrium Theory. The principle behind the theory states that traffic arranges itself on a network so that the cost of travel on a route between an origin and destination is equal to or less than all other potential but unused routes. This applies to all trips in the network such that the lowest overall or aggregate cost within the network extents can be achieved.

7.2 TAG CONVERGENCE MEASURES

7.2.1. An assignment model is deemed to be converged if there is no significant change in travel costs across all the routes between successive iterations. Convergence limits "modelled noise", reducing errors and allowing the true impacts of forecast model tests to be established.
7.2.2. TAG recommends several criteria to be applied for all highway assignments to achieve a final solution, i.e., route choice, flows and delays produced from the model are deemed stable. It recommends that the model should continue until, for at least 98% of cases, the percentage of link flow or cost differences changes by no more than 1% on four successive iterations, as replicated in Table 7-1.

Table 7-1 - TAG Convergence Measures

Measure of convergence	Base Model Acceptable Values
Delta and \%Gap	Less than 0.1% or at least with convergence fully documented and all other criteria met
Percentage of links with flow change $<1 \%$	Four consecutive iterations greater than 98%
Percentage of links with cost change $<1 \%$	Four consecutive iterations greater than 98%

(Source: TAG M3.1 Table 4)

7.3 CONVERGENCE PARAMETERS IN SATURN

7.3.1. The parameters implemented in SDSM are equivalent or more stringent than those required by TAG to ensure a high level of convergence is achieved in the base year assignments and are listed in Table 7-2.

Table 7-2 - Assignment Parameters

Parameter	Function	SATURN Default Value	SDSM Value
MASL	Maximum number of assignment-simulation loops within SATALL.	15	150
KONSTP	Control of Stopping Criteria: based on selection.	0 (ISTOP)	5^{*}
RSTOP	Used in convergence of assignment/simulation loops.	95% (TAG criteria $98 \%)$	99%
NOMADS	Number of multiple user classes to be assigned separately.	1	5
STPGAP	Critical gap value (\%) used to terminate assignment- simulation loops when KONSTP = 1 or 5.	1% (TAG criteria $0.1 \%)$	0.01%
PCNEAR	Percentage change in flows judged to be "near" in successive assignments.	1%	1%
NISTOP	The number of successive loops which must satisfy the "ISTOP" criteria in the test for convergence of the assignment/simulation loops.	4	4

* 5 means that SATURN seeks to terminate the assignment only when proximity (STPGAP) and stability (RSTOP/PCNEAR/NISTOP) measures are both satisfied

7.4 ASSIGNMENT CONVERGENCE

7.4.1. In accordance with the criteria described above, the convergence results are summarised in Table 7-3. The base model assignments achieve the SDSM criteria (equivalent to or exceeding TAG) in all time periods. The final loop was 11, 16 and 13 in the AM peak, inter peak and PM peak model respectively.

Table 7-3 - Calibrated Assignment Convergence Statistics

Time Period	Loop	Proximity indicator: Delta (δ) / (Gap (\%)	Stability Indicator: \% Flow (Link Flows Differing by < 1\% Between Assignment \& Simulation)	Stability Indicator: \% Delays (Turn Delays Differing by < 1\% Between Assignment \& Simulation)
AM	8	0.004	99.1	99.9
	9	0.004	99.1	99.9
	10	0.0038	99.2	99.9
	11	0.0037	99.3	99.9
IP	13	0.0007	99.3	100.0
	14	0.0004	99.3	100.0
	15	0.0003	99.6	100.0
	16	0.0005	99.6	100.0
PM	10	0.0041	99.2	100.0
	11	0.0043	99.6	100.0
	12	0.0052	99.4	99.9
	13	0.0059	99.2	100.0

8 HIGHWAY NETWORK CHECKS \& CALIBRATION

8.1 INTRODUCTION

8.1.1. This chapter details the calibration process undertaken for the SDSM base year models. Standard techniques, referencing TAG guidance, have been employed to produce the calibrated base year highway models and validate these against independent data sources.
8.1.2. The calibration process involved three sources of information:

- Traffic count ATC/MCC and journey time data collated and processed in accordance with the methodology set out in Chapter 3.
- Initial SATURN networks for each time period (AM peak, inter peak and PM peak) developed in accordance with the methodology set out in Chapter 4; and
- Initial trip matrices for each time period (AM peak, inter peak and PM peak) developed in accordance with the methodology set out in Chapter 5.
8.1.3. The process for calibrating base year highway models is described in this chapter, including details of:
- Network checking and acceptance tests.
- Network calibration - local adjustments.
- Matrix calibration - prior matrix assignments.
- Matrix calibration - matrix estimation process; and
- Matrix calibration - impacts of matrix estimation.
8.1.4. A summary of the whole calibration and validation process is illustrated in Figure 8-1.
8.1.5. Chapter 8 documents the SDSM validation results which follows on from the model calibration process.

Figure 8-1 - Calibration and Validation Process

8.2 NETWORK CHECKING AND ACCEPTANCE TESTS

8.2.1. Quality and calibration checks were carried out on the networks following the completion of network coding which have been designed to assess the network suitability before moving into full calibration tasks.
8.2.2. Detailed reporting of these checks can be found in Appendix D including tabulations and P1X outputs where relevant. The summary results are presented below.

Test 1 - Network Completeness Check

8.2.3. The network for the study area was developed in accordance with the specification agreed in the MSR. As agreed with SDC, all roads within the study area have been coded in the simulation network and roads outside the study area had been coded as buffer or external network. There was a total of 6,647 modelled links representing $10,508 \mathrm{~km}$ of modelled network and 3,802 model nodes.

Test 2 - SATURN Compilation Check

8.2.4. The networks were built in SATNET and reviewed and adjusted were necessary throughout the network development.

Test 3 - Inspection of Key Junctions

8.2.5. The following checks were completed across the study area:

- Junctions had the correct definitions.
- Junctions had consistent and appropriate representations based on the available data sources.
- Signalised junctions had correct timings based on the data available;
- Times to circle roundabouts were consistent and appropriate based on the data available; and
- Right turn on major arm definitions for priority junctions were applied consistently.

Test 4 - Range/Logic Checks

8.2.6. The modelled networks were checked to make sure that the characteristics of the coded network (junction type, number of arms and lanes, lane usage) and the properties assigned to the network (road class, speeds, speed-flow curves) were coded correctly. The coded link speeds and HGV restrictions are presented in Figure 8-2, Figure 8-3 and Figure 8-4 respectively.

Test 5 - Network Routeing

Twenty-five paths were tested in line with the TAG recommendation on number of routes to test. Guidance presented in TAG Unit M3.1 proposes the number of routes to be tested is derived from the formula:

- Number of OD Pairs = (Number of Zones) $)^{0.25} \times$ Number of User Classes
8.2.7. All of the tested paths showed plausible routings in a congested urban network with wide route choice in some cases and validated against Google Maps journey planner; in particular for areas that are unexpectedly avoided or unexpectedly attractive on the unloaded network.
8.2.8. The checks undertaken on the resultant networks are documented and reviewed in Appendix D.

Test 6 - Link Consistency Tests

8.2.9. It was verified against the specified acceptance criteria that:

- There was no change in link type between directions unless there is a specific justification such as a difference in speed limit or number of lanes.
- Dual carriageways had the same link type in both directions except where indicated by a difference such as speed limit or number of lanes; and
- The change in link type was consistent providing changes in speed limit when moving between urban and rural areas.
8.2.10. The percentage difference between the coded links lengths from SATURN and the crow-fly distances were checked for consistency.

Test 7 - Flat Matrix Assignment

8.2.11. A flat matrix is a matrix in which all cells have the same value.
8.2.12. The flat matrix assignment was checked against various measures:

- Routing between OD pairs (using a subset of those pairs from Test 4) appeared plausible with traffic using the major roads and taking the most obvious route in all cases.
- Bandwidths plots for actual flow showed a correct magnitude of difference between traffic on the strategic links and the minor roads; and
- Node delay plots for the urban areas showed delay occurring at expected locations on key links in and around the town centres.

8.3 NETWORK CALIBRATION - LOCAL ADJUSTMENTS

8.3.1. As part of the calibration process, preliminary assignments were carried out using different iterations of the trip matrices to assist with debugging the networks. This undertaking was carried out prior to running matrix estimation to prevent the matrix calibration from causing issues through compensating for network errors.

Delays and Flows

8.3.2. Additional network checks undertaken as part of the calibration included:

- Capacities versus observed counts.
- Modelled delays versus observed delays; and
- Modelled flows versus observed flows.
8.3.3. Where issues with the initial networks were identified, the parameters defining the capacity of movements were reviewed. The loading of zone connectors was reviewed and refined accordingly to represent more accurate loading of the traffic on to the network and to avoid issues with delays at major junctions due to loading directly to junctions.

Signalised Junctions

8.3.4. The initial assignments were reviewed to check that the levels of delay at signalised nodes was reasonable and to find the least converged nodes. For the problem areas, local signal optimisation was used as a proxy to represent varying signal timings under maximum / minimum green times.
8.3.5. However, before being adopted into the networks the signal timings were examined to assure the sensible results on a junction basis, particularly with respect to traffic volume and route hierarchy.

Figure 8-2 - Modelled Link Speeds

Figure 8-3- Links with HGV Restrictions: Selby Urban Area

Figure 8-4 - Links with HGV Restrictions: Selby District

9 MATRIX ESTIMATION

9.1 MATRIX CALIBRATION - MATRIX ESTIMATION PROCESS

9.1.1. The matrix estimation process used an iterative approach to generate a matrix with improved calibration and validation in the model. Six iterations were used, whereby the PIJA route choice factors were taken from the previous iteration, but the original prior matrix was always used for the demand adjustment. This process is shown in Figure 9-1.
9.1.2. There are several parameters within SATURN that permit the user to control the extent of change that will be caused by the matrix estimation. The SDSM process has adopted the values which have been used successfully on previous studies by WSP, including ones which utilised mobile phone data and similar matrix development techniques. The parameters are listed in Table 9-1.
9.1.3. A benefit of using mobile phone data is that it provides complete national coverage of trip making to, from and through the MND study area. Combined with the synthetic matrices infilling short distance trips there is no expectation of unobserved movements in the demand data. Therefore, a SEED value was not used.
9.1.4. The higher XAMAX value for the GV matrices reflects the lower confidence in the demand data used to derive those matrices. The ratio of the XAMAX values was initially based on values which have been used successfully on previous studies, and then reviewed during the model calibration process.

Table 9-1 - SATURN Constraints for Matrix Estimation

Parameter	Description	SDSM Value
XAMAX	The maximum balancing factor to be applied to avoid large changes to the prior matrix. (The minimum balancing factor is taken as the inverse)	Car: 2 LGV/HGV: 5
EPSILN	The convergence criteria for the difference between individual observed counts and their respective model flow.	0.001
ITERMX	The maximum number of iterations that will be run to achieve convergence.	299

Figure 9-1 - Matrix Estimation Process

9.2 MATRIX CALIBRATION - IMPACTS OF MATRIX ESTIMATION

9.2.1. The impacts of matrix estimation are assessed against four measures:

- Trip length distribution.
- Zonal cell values.
- Zonal trip ends; and
- Sector to sector movements.

The performance of the SDSM against each of these is reported in turn throughout this sub-section. Supplementary, and more detailed, report is provided in Appendix F.

Trip Length Distribution

9.2.2. TAG recommends that the trip length distribution statistics for the mean and standard deviation should be analysed with a significance criterion of differences within 5%.
9.2.3. The trip length distribution statistics for SDSM are presented in Table 9-2. The mean and standard deviation is within criteria for all cases. The trip length distributions for the AM peak can be viewed in Figure 9-2 to Figure 9-6 - all such graphs are included in Appendix F.
9.2.4. It should be noted that the average trip lengths reported in Table 9-2 are for the model overall. Specifically, this includes medium and longer distance external traffic on the two motorways and A64 which pass through the study area and skew the average trip lengths reported below to appear longer than may be expected. It is appropriate to include those trips in this analysis because there is calibration data on those roads, but it means these figures should not be considered to be representative of the modelled average trip length for trips to, from and within the local area itself.

Figure 9-2 - AM Peak - Employer's Business Car - Trip Length Distribution (Prior vs Post-ME)

Figure 9-3 - AM Peak - Commuting Car - Trip Length Distribution (Prior vs Post-ME)

Figure 9-4 - AM Peak - Other Car - Trip Length Distribution (Prior vs Post-ME)

Figure 9-5 - AM Peak - LGV - Trip Length Distribution (Prior vs Post-ME)

Figure 9-6 - AM Peak - HGV - Trip Length Distribution (Prior vs Post-ME)

Table 9-2 - Impacts of ME: Trip Length Distribution

Period	Mean	Standard Deviation					
		Prior	Post ME	Diff.	Prior	Post ME	Diff.
		77.4	75.3	-2.7%	103.8	102.3	-1.4%
	Commute	24.4	24.1	-1.5%	32.6	31.9	-2.1%
	Other	28.3	27.7	-2.2%	57.5	56.4	-1.9%
	LGV	102.1	98.9	-3.1%	94.0	94.6	0.6%
	HGV	152.9	146.1	-4.4%	118.8	115.2	-3.1%
IP	Business	75.3	73.0	-3.1%	107.4	104.5	-2.7%
	Commute	26.1	25.8	-1.0%	45.7	44.7	-2.1%
	Other	36.4	35.7	-1.9%	72.2	70.3	-2.6%
	LGV	106.7	103.6	-2.9%	96.9	96.2	-0.7%
	HGV	159.2	153.4	-3.7%	122.0	117.6	-3.7%
PM	Business	77.0	74.8	-2.9%	108.7	105.8	-2.7%
	Commute	27.3	27.1	-0.9%	38.1	37.5	-1.7%
	Other	37.8	37.0	-2.1%	73.3	71.5	-2.6%
	LGV	102.1	98.3	-3.7%	95.7	94.6	-1.2%
	HGV	164.8	156.7	-4.9%	125.0	121.3	-2.9%

Zonal Cell Values

9.2.5. TAG recommends that the zonal cell change statistics should be analysed against the significance criteria:

- R^{2} more than 0.95 .
- Slope within 0.98 and 1.02 ; and
- Intercept near zero.
9.2.6. The criteria are achieved for all car purposes and LGVs in all periods, as reported in Table 9-3 \& Table 9-4. As noted above there are greater changes for HGVs. The correlation plots for the AM peak are shown in Figure 9-7 by user class. The graphs for all three time periods are included in Appendix F.

Figure 9-7 - Correlation of Prior and Post-ME Zonal Cell Values By User Class - AM Peak

Table 9-3-Impacts of ME: Zonal Cell Values

Period	User Class	Zonal Cells		
		\mathbf{R}^{2}	Slope	Intercept
AM	Business	0.99	0.99	0.00
	Commute	1.00	1.00	0.00
	Other	1.00	1.00	0.00
	LGV	1.00	1.00	0.00
	HGV	0.98	1.00	0.00

Period	User Class	Zonal Cells		
		R^{2}	Slope	Intercept
IP	Business	0.99	1.00	0.00
	Commute	1.00	1.00	0.00
	Other	1.00	1.00	0.00
	LGV	1.00	1.00	0.00
	HGV	0.95	1.01	0.00
PM	Business	0.99	1.00	0.00
	Commute	1.00	1.00	0.00
	Other	1.00	1.00	0.01
	LGV	1.00	1.00	0.00
	HGV	0.93	1.01	0.00

Zonal Trip Ends

9.2.7. TAG recommends that the zonal cell change statistics should be analysed against the significance criteria:

- R^{2} more than 0.98 .
- Slope within 0.99 and 1.01 ; and
- Intercept near zero.
9.2.8. The criteria are achieved, or close to achieved for car purposes and LGVs across time periods. As noted above there are greater changes for HGVs. The intercept values are to be read in relation to trip end totals and the slightly larger values generally occur in more prevalent demand segments where that change is less significant.

Figure 9-8 - Correlation of Prior and Post-ME Zonal Trip Ends By Car User Class - AM Peak

Figure 9-9 - Correlation of Prior and Post-ME Zonal Trip Ends By Goods Vehs - AM Peak

Table 9-4 - Impacts of ME: Zonal Trip Ends

Period	User Class	Origins			Destinations		
		R ${ }^{2}$	Slope	Intercept	R^{2}	Slope	Intercept
AM	Business	1.00	0.99	0.48	0.99	0.97	0.80
	Commute	1.00	1.01	0.84	0.99	0.98	2.90
	Other	1.00	1.00	1.14	1.00	0.99	2.27
	LGV	1.00	1.01	1.25	1.00	1.00	1.68
	HGV	0.99	1.03	0.51	0.99	1.04	0.40
IP	Business	0.99	0.99	0.39	0.99	0.99	0.47
	Commute	1.00	1.00	0.71	1.00	1.00	0.62
	Other	1.00	1.00	1.99	1.00	1.00	2.38
	LGV	1.00	1.01	1.23	1.00	1.01	1.29
	HGV	0.99	1.08	0.42	0.99	1.06	0.63
PM	Business	0.99	0.98	0.69	0.99	1.00	0.47

Period	Orer Class				Destinations		
		R^{2}	Slope	Intercept	R^{2}	Slope	Intercept
		0.99	0.99	3.28	1.00	1.01	1.18
	Other	1.00	1.00	3.40	1.00	1.00	2.71
	LGV	1.00	1.01	1.10	1.00	1.00	1.27
	HGV	0.99	1.09	0.23	0.98	1.03	0.57

Sector to Sector Matrices

9.2.9. TAG recommends that sector to sector matrices should be analysed with a significance criterion of differences within 5\%.
9.2.10. However, there are some sector pairs with relatively low observed flow. Further aggregation of sectors would necessarily be at the expense of detail between other areas. On that basis the sector changes are reviewed against the criteria 'Within 5% or GEH <4'. This is a stricter GEH criterion than TAG applies to individual link flows (see Section 8.3) and has been similarly applied on other models of this type for similar reasons.
9.2.11. There were nine sectors used for the matrix calibration, which considered the district boundary and the locations of screenlines and cordons. Table 9-5 summarises the percentage of sector pairs which achieve the criteria, and this is comfortably in excess of 85% for all time periods and user classes.
9.2.12. The sectors are illustrated in Figure 9-10, with supplementary reporting included in Appendix F.
9.2.13. The cells which do not meet the criteria are, in some cases, isolated cells in a certain time period or segment. Specific to the core area for modelling, there are some segments where the change in trips for intra-sectors 1 , 2 or 3 does not meet the criteria. The trip length distribution analysis showed that, generally, the changes in mean trip length were not significant and so whilst matrix estimation is increasing short distance trips and reports a higher flow change at a sector cell level, the overall impact of this on the matrix integrity is small considering the other metrics.
9.2.14. This also shows matrix estimation is impacting on the shorter distance inter-urban trips which include the synthetic-blended trips, more than strategic movements. It is a common facet of matrix estimation to increase short distance trips given they are likely to have fewer PIJA factors which can vary along a trip's path. The synthetic distribution is calibrated to the observed data however the zoning is very detailed in the urban area and the estimation appears to be refining this in areas to reflect the observed count data. There is not a calibration count on every urban link and so the calibrated assignments represent an overall model equilibrium balancing the supply (including zoning), demand and observed data.

Table 9-5 - Impacts of ME: Sector to Sector Matrices

Period		Sector Pairs
	User Class	Within 5\% or GEH < 4 Slope Intercept
AM	Business	100\%
	Commute	96\%
	Other	95\%
	LGV	89\%
	HGV	98\%
IP	Business	100\%
	Commute	100\%
	Other	95\%
	LGV	96\%
	HGV	90\%
PM	Business	100\%
	Commute	95\%
	Other	93\%
	LGV	89\%
	HGV	95\%

Figure 9-10 - Calibration Sectors

10 MODEL CALIBRATION \& VALIDATION

10.1 INTRODUCTION

10.1.1. This chapter reports the SDSM base year model performance and validation summary with respect to three measures:

- Trip matrix calibration.
- Link flow calibration and validation; and
- Journey time validation.
10.1.2. The calibration and validation of the base year models utilised two sources of data:
- Traffic count data - grouped for.
- Calibration of screenline and cordon totals.
- Calibration and validation of link flow volumes.
- Journey time data - for validation of the highway network.
10.1.3. The model results for link flows and journey times are reported globally based on the cordons/screenlines presented in Figure 3-8 and Figure 3-9. Links flows have been split into calibration and validation links based on these cordons/screenlines and is presented in
10.1.4. Figure 3-10.
10.1.5. The reporting of calibration and validation results is based on TAG acceptability guidelines, and with additional 'near' criteria defined for each metric, which are detailed in their respective sections. This approach is consistent with reporting used on other large urban models to provide additional context than only pass/fail and could be considered a style Red/Amber/Green (RAG) system of validation.

10.2 TAG CRITERIA

10.2.1. The trip matrices have been calibrated against the criteria set out in Table 10-1, that is reproduced from TAG M3.1, and advises that modelled flow should be within 5% of the observed counts for "all or nearly all" cordons/screenlines.

Table 10-1 - Trip Matrix Verification Criteria

Criteria	Acceptability Guideline
Differences between modelled flows and counts should be less than 5% of the counts	All or nearly all cordons/screenlines

10.2.2. The measures used for link flow verification are:

- The absolute and percentage differences between modelled flows and counts; and
- The GEH statistic which is a hybrid of the Chi-squared statistic to incorporate both relative and absolute errors. It is defined by

$$
G E H=\sqrt{\frac{(M-C)^{2}}{(M+2) / 2}}
$$

where M is the modelled flow and C is the observed flow.
10.2.3. Both measures are considered broadly consistent and meeting either is considered satisfactory by TAG M3.1.
10.2.4. The acceptability criteria are given in Table 10-2 reproduced from TAG M3.1.

Table 10-2 - Link Flow Verification Criteria

Criteria	Description	Acceptability Guideline
1	Individual flows within 100 veh/hr of counts for flows less than 700 veh/hr	$>85 \%$ of cases
	Individual flows within 15% of counts for flows from 700 veh/hr to $2,700 \mathrm{veh} / \mathrm{hr}$	$>85 \%$ of cases
	Individual flows within 400 veh/hr of counts for flows more than 2,700 veh/hr	$>85 \%$ of cases
2	GEH < 5 for individual flows	$>85 \%$ of cases

10.2.5. Journey time routes have been validated against the criteria set out in Table 10-3 that is reproduced from TAG M3.1.

Table 10-3 - Journey Time Routes Validation Criteria

Criteria	Acceptability Guideline
Modelled times along routes should within 15\% of surveyed times (or 1 minute if higher than 15\%)	$>85 \%$ of routes

10.3 TRIP MATRIX CALIBRATION

10.3.1. Trip matrix calibration for the calibrated models is reported for nine bi-directional calibration cordons/screenlines which were mapped in Figure 3-8 and Figure 3-9.
10.3.2. The trip matrices have been calibrated against the TAG criteria set out in Table 10-1.
10.3.3. TAG also advises that cordons/screenlines should be "made up of 5 links or more". For some cordons/screenlines, particularly within the rural areas, it was not possible to do this given the routes actually 'on the ground' and without extending them in a way that would compromise the purpose for which those cordons/screenlines had been defined.
10.3.4. There are also some cordons/screenlines with relatively low observed flow. On that basis, the cordon/screenline verification is reported based on differences between modelled and observed flows 'within 5% or GEH < 4'. The latter condition is accounting for cordons/screenlines with lower
cumulative flow and/or lower number of counts and has similarly been applied in other models for those reasons mentioned. A secondary, 'near pass', criteria has been defined as 'within 7.5% or GEH <5'.
10.3.5. The results are presented in Table $10-4$ and show, overall, a strong level of calibration for screenlines and cordons. In all cases the screenlines and cordons the primary criteria based on TAG guidance ('Within 5% or GEH < 4') is 100% for all screenlines and cordons.
10.3.6. The screenline and cordon calibration for 'all vehicles' and 'cars' is also very similar across all of the reporting measures.
10.3.7. The breakdown by individual screenlines and cordons has been summarised in Table 10-5 to Table 10-8.

Table 10-4 - Trip Matrix Calibration Screenline and Cordons

| All Vehicles | Direction | Obs. | Mod. | Diff. | \%Diff. | GEH | RAG
 Rating |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Strategic Screenlines and Cordons Screenlines | | | | | | | |
| Outer Cordon | Inbound | 14,131 | 14,242 | 111 | 1% | 0.9 | G |
| | Outbound | 12,693 | 12,627 | -66 | -1% | 0.6 | G |
| Tadcaster Cordon | Inbound | 6,615 | 6,658 | 43 | 1% | 0.5 | G |
| | Outbound | 6,633 | 6,547 | -87 | -1% | 1.1 | G |
| Eggborough Cordon | Inbound | 2,380 | 2,369 | -11 | 0% | 0.2 | G |
| | Outbound | 2,291 | 2,362 | 71 | 3% | 1.5 | G |
| Screenline North-South | Northbound | 7,519 | 7,483 | -36 | 0% | 0.4 | G |
| North | Southbound | 8,048 | 7,967 | -81 | -1% | 0.9 | G |
| Screenline North-South | Northbound | 6,406 | 6,506 | 100 | 2% | 1.2 | G |
| Central | Southbound | 7,352 | 7,484 | 133 | 2% | 1.5 | G |
| Screenline East-West | Eastbound | 4,715 | 4,713 | -2 | 0% | 0.0 | G |
| Central | Westbound | 3,957 | 3,749 | -208 | -5% | 3.4 | G |
| Selby Outer Cordon | Inbound | 3,431 | 3,460 | 29 | 1% | 0.5 | G |
| | Outbound | 3,042 | 3,115 | 73 | 2% | 1.3 | G |
| Selby North-South | Northbound | 2,510 | 2,520 | 9 | 0% | 0.2 | G |
| | Southbound | 2,699 | 2,739 | 41 | 2% | 0.8 | G |
| | | | | | | | |

All Vehicles	Direction	Obs.	Mod.	Diff.	\%Diff.	GEH	RAG Rating
Selby East-West	Eastbound	1,032	1,030	-2	0%	0.1	G
	Westbound	928	983	55	6%	1.8	G

10.3.8. Table $10-8$ for 'all vehicles', including the validation ratings. The ratings are using the two criteria described above and therefore, an absolute percentage difference exceeding 5% can have a green rating if the GEH is less than 4.
10.3.9. Additional reporting of the screenline and cordon calibration is provided in Appendix G including verification for cars separately.

Table 10-5 - Calibrated Trip Matrix Calibration

Measure	All Vehicles			Cars					
	AM Peak	Inter Peak	PM Peak	AM Peak	Inter Peak	PM Peak			
Calibration Screenlines and Cordons (18)									
Within 5\% or GEH < 4 ('Green' validation)	100%	100%	100%	100%	100%	100%			
Within 7.5\% or GEH < ('Amber' validation)	100%	100%	100%	100%	100%	100%			

Table 10-6 - Calibrated Trip Matrix Screenline and Cordons: AM Peak

All Vehicles	Direction	Obs.	Mod.	Diff.	\%Diff.	GEH	RAG Rating
Strategic Screenlines and Cordons Screenlines							
Outer Cordon	Inbound	11,261	11,275	14	0\%	0.1	G
	Outbound	12,558	12,698	140	1\%	1.2	G
Tadcaster Cordon	Inbound	6,128	6,119	-9	0\%	0.1	G
	Outbound	6,148	6,135	-13	0\%	0.2	G
Eggborough Cordon	Inbound	2,099	2,082	-17	-1\%	0.4	G
	Outbound	2,159	2,192	34	2\%	0.7	G
Screenline North-South North	Northbound	7,558	7,384	-174	-2\%	2.0	G
	Southbound	6,583	6,407	-176	-3\%	2.2	G
	Northbound	6,725	7,000	274	4\%	3.3	G

All Vehicles	Direction	Obs.	Mod.	Diff.	\%Diff.	GEH	RAG Rating
Screenline North-South Central	Southbound	5,211	5,253	42	1%	0.6	G
Screenline East-West	Eastbound	3,924	3,782	-143	-4%	2.3	G
Central	Westbound	4,174	4,113	-60	-1%	0.9	G
Selby Outer Cordon	Inbound	3,015	3,089	74	2%	1.3	G
	Outbound	2,651	2,668	17	1%	0.3	G
	Northbound	2,487	2,510	24	1%	0.5	G
Selby East-West	Southbound	1,992	2,010	18	1%	0.4	G
	Eastbound	914	955	41	5%	1.3	G
	Westbound	815	813	-2	0%	0.1	G

Table 10-7-Calibrated Trip Matrix Screenline and Cordons: Inter Peak

All Vehicles	Direction	Obs.	Mod.	Diff.	\%Diff.	GEH	RAG Rating
Strategic Screenlines and Cordons Screenlines							
Outer Cordon	Inbound	8,466	8,452	-14	0\%	0.2	G
	Outbound	8,514	8,503	-11	0\%	0.1	G
Tadcaster Cordon	Inbound	4,561	4,484	-77	-2\%	1.1	G
	Outbound	4,547	4,471	-76	-2\%	1.1	G
Eggborough Cordon	Inbound	1,488	1,457	-32	-2\%	0.8	G
	Outbound	1,525	1,420	-105	-7\%	2.7	G
Screenline North-South North	Northbound	5,331	5,234	-97	-2\%	1.3	G
	Southbound	5,744	5,657	-87	-2\%	1.2	G
Screenline North-South Central	Northbound	4,947	4,996	49	1\%	0.7	G
	Southbound	5,201	5,242	41	1\%	0.6	G
Screenline East-West Central	Eastbound	2,701	2,820	119	4\%	2.3	G
	Westbound	2,897	2,863	-34	-1\%	0.6	G
Selby Outer Cordon	Inbound	2,152	2,183	31	1\%	0.7	G

All Vehicles	Direction	Obs.	Mod.	Diff.	\%Diff.	GEH	RAG Rating
	Outbound	2,163	2,167	4	0%	0.1	G
Selby North-South	Northbound	1,797	1,830	33	2%	0.8	G
	Southbound	1,858	1,857	-1	0%	0.0	G
Selby East-West	Eastbound	635	635	0	0%	0.0	G
	Westbound	627	634	6	1%	0.2	G

Table 10-8 - Calibrated Trip Matrix Screenline and Cordons: PM Peak

All Vehicles	Direction	Obs.	Mod.	Diff.	\%Diff.	GEH	RAG Rating

Strategic Screenlines and Cordons Screenlines

Outer Cordon	Inbound	14,131	14,242	111	1\%	0.9	G
	Outbound	12,693	12,627	-66	-1\%	0.6	G
Tadcaster Cordon	Inbound	6,615	6,658	43	1\%	0.5	G
	Outbound	6,633	6,547	-87	-1\%	1.1	G
Eggborough Cordon	Inbound	2,380	2,369	-11	0\%	0.2	G
	Outbound	2,291	2,362	71	3\%	1.5	G
Screenline North-South North	Northbound	7,519	7,483	-36	0\%	0.4	G
	Southbound	8,048	7,967	-81	-1\%	0.9	G
Screenline North-South Central	Northbound	6,406	6,506	100	2\%	1.2	G
	Southbound	7,352	7,484	133	2\%	1.5	G
Screenline East-West Central	Eastbound	4,715	4,713	-2	0\%	0.0	G
	Westbound	3,957	3,749	-208	-5\%	3.4	G
Selby Outer Cordon	Inbound	3,431	3,460	29	1\%	0.5	G
	Outbound	3,042	3,115	73	2\%	1.3	G
Selby North-South	Northbound	2,510	2,520	9	0\%	0.2	G
	Southbound	2,699	2,739	41	2\%	0.8	G
Selby East-West	Eastbound	1,032	1,030	-2	0\%	0.1	G
	Westbound	928	983	55	6\%	1.8	G

10.4 LINK FLOW CALIBRATION

10.4.1. The summary statistics for the link flow calibration in the calibrated models is reported in Table 10-9 for all counts across the study area. The TAG criteria shown in Table 10-2 is achieved for both 'all vehicles' and 'cars' in each time period. The results are also very similar for 'all vehicles' and 'cars'.
10.4.2. The results for turn flow counts are presented in Table 10-9 and Table 10-10. The results show that the turn flows exceed the TAG requirement of 85% for both flow and GEH for both 'all vehicles' and 'cars' in each time period. In addition, the TAG criteria is close to 100% for all time periods. More detailed reporting of the link flow calibration is provided in Appendix H. Figure 10-1 to Figure 10-3 show the GEH statistic for the modelled link flows versus the observed link flows for all vehicles across the three time periods.

Table 10-9 - Link Flow Calibration: All Counts

Measure (572 counts)	All Vehicles			Cars		
	AM Peak	Inter Peak	PM Peak	AM Peak	Inter Peak	PM Peak
Pass Criteria 1	99%	99%	98%	100%	99%	98%
Pass Criteria 2	96%	97%	96%	97%	98%	97%
Pass TAG	99%	99%	99%	100%	99%	99%

Table 10-10 - Turn Flow Verification: All Counts

Measure (672 turn counts)	All Vehicles			Cars		
	AM Peak	Inter Peak	PM Peak	AM Peak	Inter Peak	PM Peak
Pass Criteria 1	99%	98%	98%	99%	99%	99%
Pass Criteria 2	88%	90%	88%	91%	93%	89%
Pass TAG	99%	99%	99%	99%	99%	99%

Figure 10-1 - GEH Statistic of Modelled Flow vs Observed Count by Direction - AM Peak

Figure 10-2 - GEH Statistic of Modelled Flow vs Observed Count by Direction - Inter Peak

Figure 10-3 - GEH Statistic of Modelled Flow vs Observed Count by Direction - PM Peak

10.5 LINK FLOW VALIDATION

10.5.1. Trip matrix validation for the calibrated models is reported for four bi-directional validation cordons/screenlines which were mapped in Figure 3-8 and Figure 3-9.
10.5.2. The trip matrices have been calibrated against the TAG criteria set out in Table 10-1.
10.5.3. There some cordons/screenlines with relatively low observed flow. On that basis, the cordon/screenline verification is reported based on differences between modelled and observed flows 'within 5% or GEH < 4'. The latter condition is accounting for cordons/screenlines with lower cumulative flow and/or lower number of counts and has similarly been applied in other models for those reasons mentioned. A secondary, 'near pass', criteria has been defined as 'within 7.5% or GEH <5 '.
10.5.4. The results are presented in Table 10-11 and show, overall, a strong level of validation for screenlines and cordons. In all cases the screenlines and cordons the primary criteria based on TAG guidance ('Within 5% or GEH < 4') is above 85% for all screenlines and cordons.
10.5.5. The screenline and cordon validation for 'all vehicles' and 'cars' is also very similar across all the reporting measures. The breakdown by individual screenlines and cordons has been summarised in Table 10-11 to Table 10-14 for 'all vehicles', including the validation ratings. The ratings are using the two criteria described above and therefore, an absolute percentage difference exceeding 5\% can have a green rating if the GEH is less than 4.
10.5.6. Additional reporting of the screenline and cordon validation is provided in Appendix G including verification for cars separately.

Table 10-11 - Calibrated Trip Matrix Validation

Measure	All Vehicles			Cars		
	AM Peak	Inter Peak	PM Peak	AM Peak	Inter Peak	PM Peak
Calibration Screenlines and Cordons (18)						
Within 5\% or GEH < 4 ('Green’ validation)	88\%	100\%	88\%	88\%	88\%	88\%
Within 7.5% or GEH < 5 ('Amber' validation)	100\%	100\%	100\%	100\%	100\%	100\%

Table 10-12 - Calibrated Trip Matrix Screenline and Cordons: AM Peak

| All Vehicles | Direction | Obs. | Mod. | Diff. | \%Diff. | GEH | RAG
 Rating |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Strategic Screenlines and Cordons Screenlines | | | | | | | |
| Sherburn Cordon | Inbound | 1989 | 2164 | 175 | 9% | 3.9 | G |
| | Outbound | 1829 | 2041 | 212 | 12% | 4.8 | A |
| Screenline North-South | Northbound | 1352 | 1371 | 19 | 1% | 0.5 | G |
| | Southbound | 1125 | 1141 | 16 | 1% | 0.5 | G |
| Screenline East-West | Eastbound | 894 | 914 | 20 | 2% | 0.7 | G |
| Westbound | 1376 | 1331 | -45 | -3% | 1.2 | G | |
| Selby Town Centre Cordon | Inbound | 3123 | 2994 | -129 | -4% | 2.3 | G |
| | Outbound | 2340 | 2368 | 28 | 1% | 0.6 | G |

Table 10-13 - Calibrated Trip Matrix Screenline and Cordons: Inter Peak

| All Vehicles | Direction | Obs. | Mod. | Diff. | \%Diff. | GEH | RAG
 Rating |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Strategic Screenlines and Cordons Screenlines | | | | | | | |
| Sherburn Cordon | Inbound | 1257 | 1356 | 98 | 8% | 2.7 | G |
| | Outbound | 1289 | 1395 | 106 | 8% | 2.9 | G |
| Screenline North-South | Northbound | 935 | 850 | -85 | -9% | 2.9 | G |
| | Southbound | 938 | 915 | -23 | -2% | 0.8 | G |
| Screenline East-West | Eastbound | 748 | 764 | 16 | 2% | 0.6 | G |
| | Westbound | 754 | 722 | -31 | -4% | 1.2 | G |
| Selby Town Centre Cordon | Inbound | 2524 | 2446 | -78 | -3% | 1.6 | G |
| | Outbound | 2530 | 2517 | -13 | -1% | 0.3 | G |

Table 10-14 - Calibrated Trip Matrix Screenline and Cordons: PM Peak

| All Vehicles | Direction | Obs. | Mod. | Diff. | \%Diff. | GEH | RAG
 Rating |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Strategic Screenlines and Cordons Screenlines | | | | | | | |
| Sherburn Cordon | Inbound | 2103 | 2383 | 280 | 13% | 5.9 | A |
| | Outbound | 2246 | 2220 | -26 | -1% | 0.6 | G |
| Screenline North-South | Northbound | 1466 | 1481 | 15 | 1% | 0.4 | G |
| | Southbound | 1411 | 1425 | 14 | 1% | 0.4 | G |
| Screenline East-West | Eastbound | 1349 | 1421 | 72 | 5% | 1.9 | G |
| | Westbound | 1040 | 1003 | -38 | -4% | 1.2 | G |
| Selby Town Centre Cordon | Inbound | 2948 | 2828 | -120 | -4% | 2.2 | G |
| | Outbound | 3303 | 3351 | 48 | 1% | 0.8 | G |

10.5.7. The summary statistics for the link flow validation in the calibrated models is reported in Table 10-15 for all counts across the study area. The TAG criteria shown in Table 10-2 is achieved for both 'all vehicles' and 'cars' in each time period. The results are also very similar for 'all vehicles' and 'cars'.
10.5.8. More detailed reporting of the link flow validation is provided in Appendix H.

Table 10-15 - Link Flow Validation: All Counts

Measure (216 counts)	All Vehicles			Cars		
	AM Peak	Inter Peak	PM Peak	AM Peak	Inter Peak	PM Peak
Pass Criteria 1	94%	97%	92%	97%	98%	95%
Pass Criteria 2	92%	96%	90%	90%	95%	89%
Pass TAG	95%	98%	94%	97%	98%	95%

10.6 JOURNEY TIME VALIDATION

10.6.1. A total of 35 bi-directional journey time routes have been assessed which cover all the key routes within the study area.
10.6.2. Table 10-16 and Table 10-17 summarises the performance of all the journey time routes and journey time routes in the core areas against WebTAG guidance.

Table 10-16 - Journey Time Validation: All Routes

Performance Measure (70 routes)	AM Peak	Inter Peak	PM Peak
Routes within 15% or 1 min of Observed Times ('Green' validation)	96%	99%	97%
Within 20\% - Near Pass ('Amber' validation)	100%	100%	100%

Table 10-17 - Journey Time Validation: Core Area Routes

Performance Measure (40 routes)	AM Peak	Inter Peak	PM Peak
Routes within 15\% or 1 min of Observed Times ('Green' validation)	98%	100%	98%
Within 20\% - Near Pass ('Amber' validation)	100%	100%	100%

10.6.3. The results show that the journey time routes in both the global and core areas achieve a significantly higher level of validation compared to the 85% threshold required by WebTAG.
10.6.4. The results shows that a higher level of validation has been achieved in the core areas compared to the global results and all periods surpass the 85% threshold defined by WebTAG.
10.6.5. The above tables also show that if a slightly relaxed criteria of 20% (instead of 85%, i.e 15% as per WebTAG) was applied then a 100% validation across all journey time routes and times periods is achieved.
10.6.6. These results demonstrate that most routes pass the criteria with the remaining routes being considered 'near passes', showing a very strong level of validation.
10.6.7. More detailed reporting of the journey time validation is provided in Appendix I.
10.6.8. The journey time validation results are summarised by route, direction, time period and geographical area in Table 10-18 to Table 10-20. Additionally, a map of each route by direction and by time period are detailed in Figure 10-4 to Figure 10-6.
10.6.9. It should also be noted that Route 12 has been removed from the results. This was because this route is a rat-run in Selby, in addition to being a very short route (less than 1 km , as per WebTAG guidelines) with potentially unreliable observed data.

Table 10-18- Journey Time Validation Summary by Route: AM Peak

| Route ID | Obs. | Mod. | Diff. | \%Diff | Pass TAGRAG
 Rating | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Selby | | | | | | |
| Route 2 NB | 826 | 883 | 56 | 7% | Yes | G |
| Route 2 SB | 860 | 907 | 47 | 5% | Yes | G |
| Route 3 ACW | 349 | 357 | 8 | 2% | Yes | G |

いい|

Route ID	Obs.	Mod.	Diff.	\%Diff	Pass TAG	RAG Rating
Route 3 CW	413	392	-21	-5%	Yes	G
Route 4 EB	786	800	14	2%	Yes	G
Route 4 WB	826	837	11	1%	Yes	G
Route 5 NB	537	628	91	17%	No	A
Route 5 SB	515	535	19	4%	Yes	G
Route 6 EB	259	259	0	0%	Yes	G
Route 6 WB	269	284	16	6%	Yes	G
Route 7 WB	342	316	-25	-7%	Yes	G
Route 7 EB	363	329	-34	-9%	Yes	G
Route 8 NB	631	580	-51	-8%	Yes	G
Route 8 SB	709	632	-76	-11%	Yes	G
Route 10 EB	389	395	6	2%	Yes	G
Route 10 WB	381	383	2	1%	Yes	G
Route 13 EB	140	150	10	7%	Yes	G
Route 13 WB	139	163	24	17%	Yes	G

Tadcaster

Route 15 EB	444	449	6	1\%	Yes	G
Route 15 WB	424	454	30	7\%	Yes	G
Route 16 WB	437	428	-10	-2\%	Yes	G
Route 16 EB	459	450	-9	-2\%	Yes	G
Sherburn						
Route 14 EB	485	467	-18	-4\%	Yes	G
Route 14 WB	464	471	7	1\%	Yes	G
Route 20 SB	371	345	-25	-7\%	Yes	G
Route 20 NB	385	361	-24	-6\%	Yes	G
Route 25 NB	1020	992	-28	-3\%	Yes	G

Route ID	Obs.	Mod.	Diff.	\%Diff	Pass TAG	RAG Rating
Route 25 SB	968	899	-69	-7%	Yes	G
Route 27 NB	199	209	11	5%	Yes	G
Route 27 SB	194	207	13	7%	Yes	G
Route 31 EB	500	460	-41	-8%	Yes	G
Route 31 WB	474	449	-25	-5%	Yes	G

Eggborough

Route 21 NB	203	245	43	21%	Yes	G
Route 21 SB	229	249	20	9%	Yes	G
Route 22 EB	619	612	-7	-1%	Yes	G
Route 22 WB	627	611	-15	-2%	Yes	G
Route 23 EB	574	515	-58	-10%	Yes	G
Route 23 WB	532	518	-14	-3%	Yes	G
Route 24 NB	507	468	-39	-8%	Yes	G
Route 24 SB	494	464	-30	-6%	Yes	G
Other Routes						
Route 1 EB	551	481	-71	-13%	Yes	G
Route 1 WB	549	474	-75	-14%	Yes	G
Route 9 WB	556	492	-63	-11%	Yes	G
Route 9 EB	573	480	-94	-16%	No	A
Route 11 SB	244	244	0	0%	Yes	G
Route 11 NB	291	246	-45	-16%	Yes	G
Route 17 EB	555	565	11	2%	Yes	G
Route 17 WB	536	537	1	0%	Yes	G
Route 18 EB	247	206	-41	-17%	Yes	G
Route 18 WB	261	210	-51	-19%	Yes	G
Route 19 EB	771	633	-138	-18%	No	A

Route ID	Obs.	Mod.	Diff.	\%Diff	Pass TAG	RAG Rating
Route 19 WB	712	654	-58	-8\%	Yes	G
Route 26 NB	255	236	-19	-8\%	Yes	G
Route 26 SB	246	243	-3	-1\%	Yes	G
Route 28 EB	601	565	-36	-6\%	Yes	G
Route 28 WB	619	595	-24	-4\%	Yes	G
Route 29 NB	821	795	-26	-3\%	Yes	G
Route 29 SB	819	783	-36	-4\%	Yes	G
Route 30 WB	618	585	-33	-5\%	Yes	G
Route 30 EB	584	537	-47	-8\%	Yes	G
Route 32 SB	491	459	-32	-6\%	Yes	G
Route 32 NB	502	480	-22	-4\%	Yes	G
Route 33 NB	954	892	-62	-6\%	Yes	G
Route 33 SB	701	740	39	6\%	Yes	G
Route 34 EB	460	471	11	2\%	Yes	G
Route 34 WB	457	466	9	2\%	Yes	G
Route 35 EB	1099	1036	-63	-6\%	Yes	G
Route 35 WB	1163	1048	-115	-10\%	Yes	G
Route 36 NB	1357	1384	27	2\%	Yes	G
Route 36 SB	1278	1280	2	0\%	Yes	G

Table 10-19- Journey Time Validation Summary by Route: Inter Peak

| Route ID | Obs. | Mod. | Diff. | \%Diff | Pass TAG | RAG
 Rating |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Selby | | | | | | |
| Route 2 NB | 790 | 849 | 59 | 8% | Yes | G |
| Route 2 SB | 826 | 848 | 21 | 3% | Yes | G |
| Route 3 ACW | 362 | 363 | 1 | 0% | Yes | G |
| Route 3 CW | 402 | 375 | -26 | -6% | Yes | G |

いい|

Route ID	Obs.	Mod.	Diff.	\%Diff	Pass TAG	RAG Rating
Route 4 EB	768	778	9	1%	Yes	G
Route 4 WB	803	780	-24	-3%	Yes	G
Route 5 NB	527	530	3	1%	Yes	G
Route 5 SB	502	500	-3	0%	Yes	G
Route 6 EB	228	252	24	10%	Yes	G
Route 6 WB	281	278	-2	-1%	Yes	G
Route 7 WB	332	309	-23	-7%	Yes	G
Route 7 EB	348	313	-35	-10%	Yes	G
Route 8 NB	619	578	-42	-7%	Yes	G
Route 8 SB	675	625	-50	-7%	Yes	G
Route 10 EB	367	387	19	5%	Yes	G
Route 10 WB	368	381	13	4%	Yes	G
Route 13 EB	167	162	-5	-3%	Yes	G
Route 13 WB	147	161	14	9%	Yes	G

Tadcaster

Route 15 EB	428	434	6	2%	Yes	G
Route 15 WB	411	431	20	5%	Yes	G
Route 16 WB	399	406	7	2%	Yes	G
Route 16 EB	407	420	13	3%	Yes	G

Sherburn

Route 14 EB	455	443	-11	-2%	Yes	G
Route 14 WB	446	454	8	2%	Yes	G
Route 20 SB	348	341	-8	-2%	Yes	G
Route 20 NB	363	345	-18	-5%	Yes	G
Route 25 NB	982	921	-61	-6%	Yes	G
Route 25 SB	950	897	-53	-6%	Yes	G

Route ID	Obs.	Mod.	Diff.	\%Diff	Pass TAG	RAG Rating
Route 27 NB	186	209	23	12%	Yes	G
Route 27 SB	191	204	13	7%	Yes	G
Route 31 EB	482	453	-28	-6%	Yes	G
Route 31 WB	471	443	-28	-6%	Yes	G

Eggborough

Route 21 NB	203	215	12	6%	Yes	G
Route 21 SB	210	216	6	3%	Yes	G
Route 22 EB	633	607	-26	-4%	Yes	G
Route 22 WB	635	596	-39	-6%	Yes	G
Route 23 EB	535	501	-34	-6%	Yes	G
Route 23 WB	523	504	-19	-4%	Yes	G
Route 24 NB	488	438	-50	-10%	Yes	G
Route 24 SB	493	443	-51	-10%	Yes	G
Other Routes						
Route 1 EB	529	451	-79	-15%	Yes	G
Route 1 WB	533	448	-85	-16%	No	A
Route 9 WB	550	485	-65	-12%	Yes	G
Route 9 EB	547	476	-71	-13%	Yes	G
Route 11 SB	239	241	2	1%	Yes	G
Route 11 NB	233	239	6	3%	Yes	G
Route 17 EB	517	519	2	0%	Yes	G
Route 17 WB	533	525	-9	-2%	Yes	G
Route 18 EB	218	205	-13	-6%	Yes	G
Route 18 WB	211	205	-5	-3%	Yes	G
Route 19 EB	675	633	-42	-6%	Yes	G
Route 19 WB	697	643	-54	-8%	Yes	G

Route ID	Obs.	Mod.	Diff.	\%Diff	Pass TAG	RAG Rating
Route 26 NB	246	235	-11	-5\%	Yes	G
Route 26 SB	246	242	-4	-2\%	Yes	G
Route 28 EB	591	557	-34	-6\%	Yes	G
Route 28 WB	597	561	-37	-6\%	Yes	G
Route 29 NB	784	756	-28	-4\%	Yes	G
Route 29 SB	778	774	-4	-1\%	Yes	G
Route 30 WB	590	528	-62	-11\%	Yes	G
Route 30 EB	562	522	-40	-7\%	Yes	G
Route 32 SB	494	458	-36	-7\%	Yes	G
Route 32 NB	487	461	-26	-5\%	Yes	G
Route 33 NB	702	681	-20	-3\%	Yes	G
Route 33 SB	696	715	19	3\%	Yes	G
Route 34 EB	453	466	13	3\%	Yes	G
Route 34 WB	453	457	4	1\%	Yes	G
Route 35 EB	1127	1033	-95	-8\%	Yes	G
Route 35 WB	1125	1029	-96	-9\%	Yes	G
Route 36 NB	1277	1302	25	2\%	Yes	G
Route 36 SB	1306	1300	-6	0\%	Yes	G

Table 10-20 - Journey Time Validation Summary by Route: PM Peak

| Route ID | Obs. | Mod. | Diff. | \%Diff | Pass TAGRAG
 Rating | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Selby | | | | | | |
| Route 2 NB | 821 | 908 | 87 | 11% | Yes | G |
| Route 2 SB | 954 | 887 | -67 | -7% | Yes | G |
| Route 3 ACW | 381 | 432 | 50 | 13% | Yes | G |
| Route 3 CW | 496 | 446 | -50 | -10% | Yes | G |
| Route 4 EB | 763 | 834 | 71 | 9% | Yes | G |

いい|

Route ID	Obs.	Mod.	Diff.	\%Diff	Pass TAG	RAG Rating
Route 4 WB	911	812	-99	-11%	Yes	G
Route 5 NB	544	601	56	10%	Yes	G
Route 5 SB	532	550	18	3%	Yes	G
Route 6 EB	263	279	16	6%	Yes	G
Route 6 WB	313	296	-17	-5%	Yes	G
Route 7 WB	318	318	0	0%	Yes	G
Route 7 EB	334	317	-17	-5%	Yes	G
Route 8 NB	636	588	-48	-8%	Yes	G
Route 8 SB	723	685	-39	-5%	Yes	G
Route 10 EB	362	383	22	6%	Yes	G
Route 10 WB	406	385	-21	-5%	Yes	G
Route 13 EB	185	185	0	0%	Yes	G
Route 13 WB	175	167	-8	-5%	Yes	G

Tadcaster

Route 15 EB	435	457	22	5%	Yes	G
Route 15 WB	420	457	37	9%	Yes	G
Route 16 WB	418	428	10	2%	Yes	G
Route 16 EB	422	447	25	6%	Yes	G
Sherburn						
Route 14 EB	581	471	-109	-19%	No	A
Route 14 WB	461	477	16	4%	Yes	G
Route 20 SB	392	363	-29	-7%	Yes	G
Route 20 NB	378	361	-17	-5%	Yes	G
Route 25 NB	963	929	-34	-4%	Yes	G
Route 25 SB	1046	956	-90	-9%	Yes	G
Route 27 NB	183	210	27	15%	Yes	G

Route ID	Obs.	Mod.	Diff.	\%Diff	Pass TAG	RAG Rating
Route 27 SB	200	205	5	2%	Yes	G
Route 31 EB	482	463	-18	-4%	Yes	G
Route 31 WB	460	447	-13	-3%	Yes	G

Eggborough

Route 21 NB	191	220	29	15%	Yes	G
Route 21 SB	194	222	28	14%	Yes	G
Route 22 EB	652	657	5	1%	Yes	G
Route 22 WB	639	634	-6	-1%	Yes	G
Route 23 EB	547	519	-29	-5%	Yes	G
Route 23 WB	515	515	1	0%	Yes	G
Route 24 NB	483	472	-10	-2%	Yes	G
Route 24 SB	497	468	-29	-6%	Yes	G
Other Routes						
Route 1 EB	532	482	-51	-10%	Yes	G
Route 1 WB	545	476	-69	-13%	Yes	G
Route 9 WB	563	492	-70	-13%	Yes	G
Route 9 EB	545	481	-64	-12%	Yes	G
Route 11 SB	262	242	-20	-8%	Yes	G
Route 11 NB	238	242	4	2%	Yes	G
Route 17 EB	522	566	44	8%	Yes	G
Route 17 WB	540	556	16	3%	Yes	G
Route 18 EB	207	208	0	0%	Yes	G
Route 18 WB	200	208	7	4%	Yes	G
Route 19 EB	648	637	-12	-2%	Yes	G
Route 19 WB	749	644	-105	-14%	Yes	G
Route 26 NB	237	236	-2	-1%	Yes	G

Route ID	Obs.	Mod.	Diff.	\%Diff	Pass TAG	RAG Rating
Route 26 SB	231	242	12	5\%	Yes	G
Route 28 EB	586	602	17	3\%	Yes	G
Route 28 WB	599	584	-15	-2\%	Yes	G
Route 29 NB	770	773	3	0\%	Yes	G
Route 29 SB	755	858	103	14\%	Yes	G
Route 30 WB	608	550	-58	-10\%	Yes	G
Route 30 EB	602	604	2	0\%	Yes	G
Route 32 SB	526	481	-45	-9\%	Yes	G
Route 32 NB	482	466	-16	-3\%	Yes	G
Route 33 NB	697	726	29	4\%	Yes	G
Route 33 SB	808	949	142	18\%	No	A
Route 34 EB	442	485	44	10\%	Yes	G
Route 34 WB	451	460	10	2\%	Yes	G
Route 35 EB	1101	1055	-46	-4\%	Yes	G
Route 35 WB	1103	1026	-77	-7\%	Yes	G
Route 36 NB	1261	1334	72	6\%	Yes	G
Route 36 SB	1455	1329	-126	-9\%	Yes	G

Figure 10-4 - Journey Time Route Validation Summary Map: AM Peak

Figure 10-5 - Journey Time Route Validation Summary Map: Inter Peak

Figure 10-6 - Journey Time Route Validation Summary Map: PM Peak

11 SUMMARY AND CONCLUSIONS

11.1 SUMMARY OF DEVELOPMENT

11.1.1. The Selby District Strategic Transport Model has been developed for a base year of 2019 in SATURN software, with the modelling assisted by a comprehensive data collection program.
11.1.2. An observed prior matrix was derived from mobile phone origin-destination data which provided fully observed movements sampled over a month-long period for all modes within the mobile phone data collection study area.
11.1.3. The data was processed by Telefonica through cell tracking of O 2 mobile devices and developed into travel demand matrices using tested processes and algorithms.
11.1.4. The consultants have employed a diligent method of verifying travel demand and developing the assignment matrix, aligned to guidance in emerging TAG Unit M2.2, Base Year Matrix Development.

11.2 SUMMARY OF STANDARDS

11.2.1. The base year model calibration and validation was developed closely to the guidance in TAG Unit M3.1 Highway Assignment Modelling.
11.2.2. Across the fully modelled area, for link flows the model achieves a pass percentage of more than 94% across all time periods which is significantly higher than the WebTAG threshold of 85%.
11.2.3. Across the fully modelled area, for turn flows the model achieves a pass percentage of more than 87% across all time periods which is higher than the WebTAG threshold of 85%.
11.2.4. Across the fully modelled area, for journey time routes the model achieves a pass percentage of more than 97% across all time periods which is significantly higher than the WebTAG threshold of 85\%.
11.2.5. Hence for all three periods exceeded the thresholds set by WebTAG for link flows, turn flows and journey times journey time criteria, both globally and in the key model areas.
11.2.6. A greater quantity of data, relative to the amount of modelled network, used in calibration and validation was collected in the core areas meaning that a higher proportion of modelled network in these areas either had a count to calibrate flows or a link that was part of a journey time route.
11.2.7. The results in core areas showed that the model achieved higher levels of validation compared to the remainder of the modelled area.

11.3 SUMMARY

11.3.1. The appropriateness of the Selby District Strategic Transport Model has been judged on whether the model will produce a realistic response for the proposed schemes to be tested. A key consideration is the demonstration of base year calibration/validation results in line with TAG guideline criteria.
11.3.2. The model meets these criteria in most cases, at both the strategic level, and for key areas identified in the brief, subsequently refined through the Model Specification Report.
11.3.3. Results have also been presented globally - in line with TAG guidance, for the full modelled area and in the key areas of interest for future model applications.
11.3.4. TAG guidance makes clear that determining appropriateness of the model is based on the model providing a realistic response to forecast scenarios. Whilst model validation provides one indication of this, adherence to benchmark criteria does not guarantee fitness for purpose. Equally, narrowly missing target criteria does not mean that a model cannot be considered appropriate.
11.3.5. Whilst every effort has been put in to ensure the model is representative of the base scenario, for future applications of the Selby District Strategic Transport Model, it would be expected that each application undertakes a review of the local base year validation and, if necessary, proportional refinement undertaken for the local area as appropriate. This should be documented in the Appraisal Specification Report associated with the relevant scheme being tested.
11.3.6. The document "TAG: Guidance for the Technical Project Manager" references this process, which is generally considered as best practice when using a generic model for specific scheme forecasting and appraisal. Such analysis would also form part of assessing "realistic results" for specific interventions being tested.
11.3.7. Application of the whole SDSTM in forecasting models, and the local modelled responses in the forecast models, must also be considered in order to determine the appropriateness of the SDSTM overall for each scheme assessment.

Appendix A

SPEED FLOW CURVES

Index	X , Description	So	S2	Capacity	N	HGV	Lane
Motorways: Rural							
	1 Motorway D4 Carriageways (70mph)	112.0	82.0	9320	2.78	96.0	4
	2 Motorway D4 Carriageways (70mph)	111.0	81.0	9320	2.78	96.0	4
	3 Motorway D4 Carriageways (70mph)	110.0	80.0	9320	2.78	96.0	4
	4 Motorway D3 Carriageways (70mph)	111.0	81.0	6990	2.78	96.0	3
	5 Motorway D3 Carriageways (70mph)	110.0	80.0	6990	2.78	96.0	3
	6 Motorway D3 Carriageways (70mph)	109.0	78.0	6990	2.79	96.0	3
	7 Motorway D2 Carriageways (70mph)	105.0	74.0	4660	2.88	96.0	2
	8 Motorway D2 Carriageways (70mph)	104.0	73.0	4660	2.88	96.0	2
	9 Motorway D2 Carriageways (70mph)	102.0	71.0	4660	2.89	96.0	2
	10 Motorway D2 Carriageways (70 mph)	101.0	70.0	4660	2.89	96.0	2
Dual Carriageway: Rural							
	11 All-Purpose D3 Carriageways (70mph)	109.0	82.0	6300	2.70	96.0	3
	12 All-Purpose D3 Carriageways (70 mph)	108.0	81.0	6300	2.70	96.0	3
	13 All-Purpose D2 Carriageways (70 mph)	105.0	78.0	4200	2.71	96.0	2
	14 All-Purpose D2 Carriageways (70mph)	101.0	74.0	4200	2.79	96.0	2
	15 All-Purpose D3 Carriageways (60mph)	98.0	72.0	6300	2.71	96.0	3
	16 All-Purpose D3 Carriageways (60mph)	95.0	71.0	6300	2.71		3
	17 All-Purpose D2 Carriageways (60mph)	96.0	70.0	4200	2.71		2
	18 All-Purpose D2 Carriageways (60mph)	93.0	69.0	4200	2.79		2
	19 All-Purpose D3 Carriageways (50mph)	80.0	56.0	5580	2.82		3
	20 All-Purpose D3 Carriageways (50mph)	79.0	55.0	5580	2.83		3
	21 All-Purpose D2 Carriageways (50 mph)	80.0	56.0	3720	2.82		2
	22 All-Purpose D2 Carriageways (50mph)	78.0	55.0	3720	2.83		2
Dual Carriageway: Suburban/Urban							
	31 D3 Carriageways (40mph)	64.0	35.0	4710	2.42		3
	32 D3 Carriageways (40mph)	64.0	35.0	4380	2.10		3
	33 D3 Carriageways (40 mph)	64.0	35.0	4110	1.79		3
	34 D2 Carriageways (40 mph)	64.0	35.0	3280	2.79		2
	35 D2 Carriageways (40mph)	64.0	35.0	3100	2.35		2
	36 D2 Carriageways (40mph)	64.0	35.0	2900	2.01		2
	37 D3 Carriageways (30 mph)	48.0	25.0	4290	2.61		3
	38 D3 Carriageways (30 mph)	45.0	25.0	4020	2.09		3
	39 D3 Carriageways (30mph)	43.0	25.0	3720	1.59		3
	40 D2 Carriageways (30mph)	48.0	25.0	2760	2.37		2
	41 D2 Carriageways (30mph)	45.0	25.0	2580	1.84		2
	42 D2 Carriageways (30 mph)	43.0	25.0	2380	1.41		2
Single Carrigeway: Rural (60mph)							
	51 Single Carriageways: SW2-9.0m A Road 60mph	92.0	60.0	1720	2.25		1
	52 Single Carriageways: S2-7.3m A Road 60mph	92.0	60.0	1420	2.08		1
	53 Single Carriageways: S2-7.0m A Road 60mph	87.0	57.0	1330	2.07		1
	54 Single Carriageways: S2-6.6m A Road 60mph	83.0	56.0	1240	2.06		1
	55 Single Carriageways: S2-6.3m B Road 60 mph	81.0	54.0	1170	2.02		1
	56 Single Carriageways: S2-6.0m B Road 60 mph	76.0	54.0	1090	2.00		1
	57 Single Carriageways: S2-5.6m B Road 60mph	73.0	53.0	970	1.94		1
	58 Single Carriageways: S2-5.2m Other Road 60mph	76.0	54.0	830	1.88		1
	59 Single Carriageways: S2-5.0m Other Road 60mph	66.0	51.0	750	1.88		1
	60 Single Carriageways: S2-4.6m Other Road 60mph	57.0	40.0	570	1.84		1
	61 Single Carriageways: S2-4.4m Other Road 60mph	54.0	35.0	440	1.58		1
	62 Single Carriageways: S2-7.3m A Road 50mph	80.0	50.0	1590	2.25		1
	63 Single Carriageways: S2-7.3m A Road 50mph	80.0	50.0	1390	2.08		1
	64 Single Carriageways: S2-7.0m A Road 50mph	76.0	47.0	1330	2.07		1
	65 Single Carriageways: S2-6.6m A Road 50mph	73.0	46.0	1240	2.06		1
	66 Single Carriageways: S2-6.3m B Road 50mph	70.0	45.0	1170	2.02		1
	67 Single Carriageways: S2-6.0m B Road 50mph	66.0	45.0	1090	2.00		1
	68 Single Carriageways: S2-5.6m B Road 50mph	63.0	45.0	970	1.94		1
	69 Single Carriageways: S2-5.2m Other Road 50mph	61.0	40.0	830	1.88		1
	70 Single Carriageways: S2-5.0m Other Road 50mph	56.0	35.0	750	1.88		1
Single Carrigeway: Suburban							
	71 Suburban Roads - Single 40mph (Good)	63.0	28.0	1380	2.51		1
	72 Suburban Roads - Single 40mph (Good)	60.0	25.0	1240	2.16		1
	73 Suburban Roads - Single 40mph (Average)	57.0	25.0	1200	1.94		1
	74 Suburban Roads - Single 40mph (Average)	54.0	25.0	1060	1.72		1
	75 Suburban Roads - Single 40mph (Poor)	51.0	25.0	980	1.53		1
	76 Suburban Roads - Single 30mph (Good)	48.0	25.0	1300	3.91		1
	77 Suburban Roads - Single 30mph (Good)	46.0	25.0	1210	2.61		1
	78 Suburban Roads - Single 30mph (Average)	44.0	25.0	1170	2.40		1
	79 Suburban Roads - Single 30mph (Average)	42.0	25.0	950	1.37		1
	80 Suburban Roads - Single 30mph (Poor)	38.0	25.0	860	1.32		1
Single Carrigeway: Urban							
	81 Urban Non-central 50\% development	48.0	25.0	930	1.97		1
	82 Urban Non-central 80\% development	48.0	25.0	930	1.65		1

83 Urban Non central 90\% development
84 Urban Central INT = 2
85 Urban Central INT $=4.5$
86 Urban Central INT = 9
87 Urban Central INT $=15$
88 Special cobble street
Small Town
91 Small Town 10\% development
92 Small Town 25\% development
93 Small Town 40\% development
94 Small Town 60% development
95 Small Town 80\% development
96 Small Town 95\% development
97 Small Town 95\% development - 20 mph

47.0	25.0	840	1.52	1
38.0	15.0	910	1.87	1
33.0	15.0	710	1.72	1
30.0	15.0	560	1.61	1
20.0	10.0	560	1.61	1
10.0	5.0	250	1.61	1
64.0	30.0	1400	2.95	1
60.0	30.0	1370	2.96	1
58.0	30.0	1300	2.94	1
48.0	25.0	1370	3.91	1
48.0	25.0	1240	3.35	1
45.0	25.0	1120	2.81	1
32.0	15.0	950	1.72	

Appendix B

MND VERIFICATION REPORT

いS|"

North Yorkshire County Council and Selby District Council

BASE MATRIX DEVELOPMENT

Mobile Network Data Verification

North Yorkshire County Council and Selby District Council

BASE MATRIX DEVELOPMENT

Mobile Network Data Verification

TYPE OF DOCUMENT (VERSION) CONFIDENTIAL

PROJECT NO. 70081319

DATE: MARCH 2022

North Yorkshire County Council and Selby District Council

BASE MATRIX DEVELOPMENT

Mobile Network Data Verification

WSP

First Floor

3 Wellington Place
Leeds
LS1 4AP
Phone: +44 1133016273
WSP.com

QUALITY CONTROL

Issue/revision	First issue	Revision 1	Revision 2	Revision 3
Remarks	Issued			
Date	04/03 / 2022			
Prepared by	Nicola Tedoldi, Sam Callaghan			
Signature				
Checked by	Narendra Sadhale			
Signature				
Authorised by	Paul Smith			
Signature				
Project number	70081319			
Report number	MND Verification			

CONTENTS

1 INTRODUCTION 1
1.1 BACKGROUND 1
1.2 MND DATA DEFINITIONS 1
1.3 MND DATA DEFINITIONS 2
1.4 MND ZONE TYPES 2
1.5 MND DEVICES AND EXPANSION 4
1.6 REPORT KEYS 5
2 TELEFONICA VERIFICATION CHECKS 6
2.1 SUMMARY 6
3 RANGE AND LOGIC CHECKS 7
3.1 LOGIC CHECKS 7
3.2 PURPOSE AND DIRECTION COMBINATIONS 7
3.3 MODE AND PURPOSE COMBINATIONS 7
3.4 RANGE CHECKS 8
3.5 AREA COMPRESSION 8
3.6 MODE SPLIT 9
3.7 TIME OF DAY 9
3.8 FURTHER SYMMETRY CONSIDERATIONS 10
4 TRIP RATES CHECKS 12
4.1 ORIGIN TRIP RATES 12
4.2 COMPARISON WITH TEMPRO - TOTAL TRIP 12
4.3 COMPARISON WITH TEMPRO - HOME BASE PRODUCTIONS 13
5 TRIP PURPOSE AND HOME BASED / NON HOME-BASED CHECKS 14
5.1 COMPARISON WITH TEMPRO - PURPOSE SPLITS 14
5.2 COMPARISON WITH TEMPRO - HOME BASED / NON-HOME-BASED SPLITS 14
6 TRIP LENGTH DISTRIBUTION CHECKS 16
6.1 COMPARISON WITH NTS 16
7 CONCLUSIONS 18

TABLES

Table 3-1 - Purpose and Direction Combinations 7
Table 3-2 - Mode and Purpose Combinations within the MND Dataset 7
Table 3-3 - Proportion of MND Matrix with Non-Zero Entries - Weekdays Only 8
Table 3-4 - Area to Area Proportions of the Overall MND Matrix - Weekdays Only (Motorised) 9
Table 3-5 - Area to Area Proportions of the Overall MND Matrix - Weekdays Only (HGV) 9
Table 3-6 - Mode split comparison 9
Table 3-7 - Average Weekday Home Based Outbound/Inbound Trips 11
Table 4-1 - Average Weekday Origin Person Trip Rates by District - All Purposes 12
Table 4-2 - Average Weekday Total Two-Way Trips - All Modes 12
Table 4-3 - Average Weekday Home Based Production Person Trip Rates 13
Table 5-1 - Work/Other Split Proportions - Education aggregated with 'Other' 14
Table 5-2 - Work/Other Split Proportions - Education aggregated with 'Work' 14
Table 5-3-HB/NHB Split Proportions 15

FIGURES

Figure 1-1 - MND Extension of the Cordon Area - MND Extension of the Cordon Area
Figure 1-2 - MND Zoning System

Figure 3-1 - Percentage of Average Weekday Flow by Time Period - Percentage of Average Weekday Flow by Time Period 10

Figure 3-2 - Percentage of Average Weekday Flow by Time Period and Purpose 10
Figure 3-3 - 'Total Origins’ vs ‘Total Destinations’ Symmetry 11
Figure 6-1 - TLD Comparison: All purposes and all modes 16
Figure 6-2 - TLD Comparison: All purposes and all modes (>5 kilometers) 17

1 INTRODUCTION

1.1 BACKGROUND

1.1.1. Telefónica has provided WSP with Mobile Network Data (MND) to develop the Selby District Strategic Transport Model (SDSTM).
1.1.2. Telefónica is a mobile network operator (O 2 in the UK) providing services to over 22 million UK customers in both the public and private sectors.
1.1.3. This technical note summarises the outcomes of the verification checks undertaken by WSP on the MND, including:

- Range and Logic Check,
- Trip Rate Checks,
- Trip Purpose and Direction Checks,
- Trip Length Distribution Checks, and
- Mode of Travel Checks.
1.1.4. As part of these verification checks TEMPRO (v7.2) was used as a comparison.

1.2 MND DATA DEFINITIONS

1.2.1. The following definitions are used in this note:

- O2 customers communicate their positions with the networks of Telefónica cells.
- Each of these communications is referred to as an event. The events can be divided in:
- Connection events occur when a user turns the phone on or off, loses or regains connection
- Call events occur when a user makes or receives a phone call, or moves between cells when on a call
- Text events occur when a user makes or receives a text message
- Movement events occur when a user moves from one cell to another
- Time-based events occur whenever a user does not create an event for a sustained period of 3 hours
- Telefónica replaces the customer details recorded in the event with an encrypted ID, known as the device ID. This allows movements of mobile devices to be tracked in a way that is not compromised.
- The time between consecutive events being registered for a particular device are registered by the same cell is called the dwell time.
- A trip for a mobile device user is defined from the time of the last event registered in the starting dwell cell until the time of the first event registered in the finishing dwell cell.
- A filter is applied to ensure that only mobile devices are included. Machine to machine devices, tablets and GPS units are excluded as they are less likely to be carried by users all times. Large business contracts are also removed from the sample to reduce the risk of double counting users who carry two phones.
- If a dwell exceeds a 30-minute threshold, the device is deemed to be static. Therefore, a static trip is recorded by a mobile device not moving for over 30 minutes within the coverage area of a single cell.

1.3 MND DATA DEFINITIONS

1.3.1. The mobile phone data was collated over a three-month period, from 01/10/2019 and 31/10/2019. The dates between from 28/10/2019 and 31/10/2019 have been excluded due to school holidays. Overall, a total of 19 days were used to build the OD matrix.

1.4 MND ZONE TYPES

1.4.1. The study area was defined by a total of 300 MND zones disaggregated in the following way:

- Cordon area zoning system corresponding to the MSOA (205 zones)
- Outer zones (95 zones)
1.4.2. The study area was further divided into 643 separate zones consisting of the following geographical specifications:
- LSOA and OA within Selby district area, plus the towns within the study area
- District and aggregations thereof outside of the study area based on route choice and proximity to the Cordon area.
1.4.3. The mobile phone raw events available for this project were available for all zones within the Cordon area. Only the trips relating to the Cordon area, i.e., trips from, to and traversing the area are included in the matrix. Therefore:
- Trips for external zones within or overlapping the Cordon area are only included if they interact with the Cordon area
1.4.4. For this reason, the analysis presented in this note is based only trips which start and/or end within the Cordon area. The Outer zones only have partial coverage therefore including them in comparisons with independent datasets such as TEMPRO would not be direct comparison, especially for magnitudes and trip rates.
1.4.5. The zone system definitions are presented in Figure 1-1 and Figure 1-2 below.

Figure 1-1 - MND Extension of the Cordon Area - MND Extension of the Cordon Area

Figure 1-2 - MND Zoning System

1.5 MND DEVICES AND EXPANSION

1.5.1. The sample collected will only cover the subset of the population who use O 2 devices. This is estimated at around a 30% share of the UK mobile market. A filter is applied to ensure that only mobile devices are included. Machine to machine devices, tablets and GPS units are excluded as they are less likely to be carried by users all times. Large business contracts are also removed from the sample to reduce the risk of double counting users who carry two phones.
1.5.2. The sample is expanded by Telefónica to the population at the zone level, in a process which takes into account mobile phone penetration and local market share.

These sections summarise key information.

1.6 REPORT KEYS

1.6.1. The MND data was supplied by different variables, using the following indexing system.

- Mode:
- Total Motorised Road
- HGV
- Period:
- AM peak (07:00-10:00)
- Inter-peak (10:00-16:00)
- PM peak (16:00-19:00)
- OP peak (19:00-7:00)
- Purpose:
- Outbound Home-Based Work
- Inbound Home-Based Work
- Outbound Home-Based Other
- Inbound Home-Based Other
- Non-Home-Based Work
- Non-Home-Based Other

2 TELEFONICA VERIFICATION CHECKS

2.1 SUMMARY

2.1.1. The first verifications of the MND data were carried out by Telefónica. These verifications are to demonstrate that the processes implemented by Telefónica have been applied correctly and to flag any deficiencies, should they occur, owing to limitations in the algorithms, so that WSP can address these as part of the transport model prior matrix development.
2.1.2. After Telefónica had completed their verification process they stated:
"The mobile phone travel demand data provided is internally consistent and compares well to the secondary datasets."
2.1.3. The verification tests were carried out for the zones within the cordon only, since trips for outer zones are only partially observed where they interact with the other zones. The main checks which were carried out were:

- Comparisons of the device trip rates against NTS. The device trip rate is 1.16 trips per working day compared to NTS national reporting of 2.75 trips per average day. Several factors contribute to this difference:
- The lack of short trips observed in the mobile network data
- The MND are only considering trips made by users with a home located inside the cordon that start/end or pass through the cordon area, not all trips a user makes. The relative size of the area will have an impact on this metric as many journeys will not be captured
- Symmetry checks for origins vs destinations and 'from home' vs 'to home' for different subsets of mode, which showed strong correlation for each,
- Logic checks on the proportion of daily flow by time period for different combinations of direction and purpose to confirm the flow patterns by time period are in line with expected patterns,
- Correlation plots against population for different subsets of the trip matrix, and
- TLD comparison between the Mobile Network Data and NTS
2.1.4. The limitations reported by Telefónica are as follows:
- The trips in the database only represent trips made by those over 12 years old.
- Comparison with trip length distributions from NTS indicate that trips below five miles are likely to be under-represented in the mobile phone data. However, this will depend on the cell resolution.

WSP has proceeded to carry out further verification checks on the data. These are documented in the following chapters.

3 RANGE AND LOGIC CHECKS

3.1 LOGIC CHECKS

3.1.1. The permutations of purpose, direction and mode were checked to assure that the outcomes were logical, and to understand the relationships between the less descriptive elements.
3.1.2. The numbers in the tables below refer to those listed in the report keys in Section 1.6.

3.2 PURPOSE AND DIRECTION COMBINATIONS

3.2.1. As expected, the home-based and non-home-based components of purpose and direction match.

Table 3-1 - Purpose and Direction Combinations

Purpose	Direction
Home-Based Work	Inbound
Home-Based Work	Outbound
Home-Based Other	Inbound
Home-Based Other	Outbound
Non-Home-Based Work	NA
Non-Home-Based Other	NA

3.3 MODE AND PURPOSE COMBINATIONS

3.3.1. As expected, all the purposes and directions are represented in motorised and HGV mode.

Table 3-2 - Mode and Purpose Combinations within the MND Dataset

Mode	Purpose	Mode	Purpose
Motorised	Home-Based Work Inbound	Motorised	Home-Based Other Inbound
Motorised	Home-Based Work Outbound	Motorised	Home-Based Other Outbound
Motorised	Non-Home-Based Work	HGV	Non-Home-Based Work
Motorised	Non-Home Based Other	HGV	Non-Home-Based Other

3.4 RANGE CHECKS

3.4.1. In the zone system supplied to Telefónica, the 300 zones are classified as follows:

- 205 study area zones; and
- 95 external zones.
3.4.2. The potential matrix size is 90,000 cells.
3.4.3. When all modes, time periods and purposes are included, the number of OD pairs with non-zero trips for an average weekday are 55,769 (62\%).
3.4.4. The results broken down by time period are summarised in Table 3-3 below.

Table 3-3 - Proportion of MND Matrix with Non-Zero Entries - Weekdays Only

Time Period	AM	IP	PM
OD Pairs with Trips	34,232	45,187	37,096
\% of Matrix Non-Zero	38%	50%	41%

3.5 AREA COMPRESSION

3.5.1. The proportions of the total matrix by high level areas are presented in Table 3-4 and Table 3-5. This gives a high-level indication of the magnitude of interaction between the Cordon area, and the rest. The zone definitions were presented in Figure 1-2. From the table we can see different results between motorised and HGV trips. In particular:
3.5.2. As regard motorised trips, we see that within the MND matrix:

- 13.6% of the trips are intra- cordon area,
- 47.6% of the trips are between the cordon area and the external region, and
- 38.8% of the trips are 'through' trips between two external zones.
3.5.3. For HGV trips we see that:
- 3.9% of the trips are intra-cordon area,
- 33.2% of the trips are between the cordon area and the external region; and
- 62.9% of the trips are 'through' trips between two external zones.
3.5.4. In summary, for motorised trips the mid-long-distance trips that interact with the cordon area represent a significative 47.6% whilst internal trips only make up a small proportion (13.6\%). For HGV intra-cordon trips are only 3.9% of the total whilst the trips that interact with the external zones represent the 96.1\%.

Table 3-4 - Area to Area Proportions of the Overall MND Matrix - Weekdays Only (Motorised)

Proportion of the overall MND matrix	Cordon Area	Rest of Study Area
Cordon Area	13.6%	23.8%
Rest of Study Area	23.8%	38.8%

Table 3-5 - Area to Area Proportions of the Overall MND Matrix - Weekdays Only (HGV)		
Proportion of the overall MND matrix	Cordon Area	Rest of Study Area
Cordon Area	3.9%	17.1%
Rest of Study Area	16.1%	62.9%

3.6 MODE SPLIT

3.6.1. The mode split in the MND matrix is presented in the Table 3-6.

Table 3-6-Mode split comparison

Purpose	MND
Motorised	97.5%
Rail	2.5%

3.7 TIME OF DAY

3.7.1. The following graphs show the time-of-day breakdown within the MND matrix:

- Figure 3-1 shows the percentage of average weekday flow by time period for peak period, for motorised and HGV. Over the full period, the inter-peak has the highest volume of trips. However, for peak hours, the PM has the highest volume of trips, with the AM very close.
- Figure 3-2 shows the same data but disaggregated by purpose; specifically, the percentage of average weekday flow by peak period by purpose. In AM 'Work' and 'Other' are very close while in the other time periods, 'Other' has a greater share (noting that 'Work' in this context, is referring to commuting).

Figure 3-1 - Percentage of Average Weekday Flow by Time Period - Percentage of Average Weekday Flow by Time Period

Figure 3-2 - Percentage of Average Weekday Flow by Time Period and Purpose

3.8 FURTHER SYMMETRY CONSIDERATIONS

3.8.1. The symmetry within the dataset is demonstrated in and Figure 3-3. It compares the daily trip end at origin and destination. The graph has an R2 value greater than 0.999 and low intercept values which
indicate a strong relationship in each plot between their respective variables. It shows that the dataset has the appropriate balance for each zone of origin trips against destination trips with no outliers. It gives confidence that trips for a traveller within the matrix start from the same zone where their last recorded trip ended.
3.8.2. Table 3-7 compares the total daily outbound and inbound Home Based trips. The Outbound Inbound ratio is higher than 0.95 for HBW and HBO. It shows that within the dataset, each time a traveller leaves home it will make a corresponding return trip home at some point during the course of the day.

Figure 3-3 - 'Total Origins' vs ‘Total Destinations’ Symmetry

Table 3-7 - Average Weekday Home Based Outbound/Inbound Trips

Purpose	Outbound	Inbound	Symmetry
Home Based Work	99,967	102,903	0.97
Home Based Other	223,400	217,727	1.02

4 TRIP RATES CHECKS

4.1 ORIGIN TRIP RATES

4.1.1. The first comparison was to check the correlation between total trips and population. The average weekday origin trip rates - i.e., total distinct trips - were calculated by district, based on population data from the 2011.
4.1.2. The origin trip rates range from 0.70 to 2.20. Aggregated for Selby District, this gives a weekday average value of 1.39 distinct trips per person as presented in Table 4-1.

Table 4-1 - Average Weekday Origin Person Trip Rates by District - All Purposes

District	All Modes	
	Total Origins	Origin Trip Rate
Selby	86,102	1.39

4.2 COMPARISON WITH TEMPRO - TOTAL TRIP

4.2.1. To investigate the total trip generation from MND, the total trips in the MND dataset were compared against the total trips in TEMPRO by MSOA for Selby District. This analysis is presented in Table 42Error! Reference source not found..
4.2.2. We see that at the delta-difference for MPOD / TEMPRO ranges from 0.44 to 0.74 . Note that, at this stage, the MND data still includes the Light Goods Vehicles (LGVs) therefore it would be expected that the MND matrix should be higher to a reasonable extent in this comparison.
4.2.3. The delta-differences presented here demonstrate that, in general, the total trips from MND for an average weekday is significantly low when compared with TEMPRO.

Table 4-2 - Average Weekday Total Two-Way Trips - All Modes

District	All Modes		
	MND	TEMPRO	δ Diff.
E02005809	18025	24998	0.72
E02005810	14152	26147	0.54
E02005811	17682	30035	0.59
E02005812	25643	34536	0.74
E02005813	28681	51621	0.56

E02005814	8067	18101	0.45
E02005815	11310	25693	0.44
E02005816	15714	26848	0.59
E02005817	11569	20267	0.57
E02005818	21150	29539	0.72
TOTAL	171993	287785	0.60

4.3 COMPARISON WITH TEMPRO - HOME BASE PRODUCTIONS

4.3.1. In addition to the previous analysis, the average weekday home based production trip rates were calculated as a sense check and compared against TEMPRO. This analysis is presented in Table 43 below for Motorised versus all TEMPRO modes. In general, the analysis follows the same trend of the previous paragraph highlighting a shortfall in total home-based trips compared to TEMPRO.

Table 4-3 - Average Weekday Home Based Production Person Trip Rates

District	All Modes		
	MND	TEMPRO	Diff.
E02005809	0.68	1.24	-45%
E02005810	0.59	1.30	-55%
E02005811	0.70	1.30	-46%
E02005812	0.64	1.24	-48%
E02005813	0.48	1.04	-53%
E02005814	0.44	1.16	-62%
E02005815	0.51	1.25	-59%
E02005816	0.56	1.26	-55%
E02005817	0.65	1.26	-48%
E02005818	0.69	1.26	-45%
TOTAL	0.60	1.23	-51%

5 TRIP PURPOSE AND HOME BASED / NON HOME-BASED CHECKS

5.1 COMPARISON WITH TEMPRO - PURPOSE SPLITS

5.1.1. In the previous chapter it was observed that there is a shortfall in trips in the MND. A trip will only be classified as 'Work' within the MND matrix if the data processing algorithms were able to infer a regular work location for the device over the data capture period. It is acknowledged that the assignment of devices to work locations can be difficult where people do not have a regular work location.
5.1.2. The Work/Other purpose split within the MND matrix has been compared against TEMPRO purpose split. The analysis is presented for all the modes for an average weekday.
5.1.3. Note that, 'Work', taken from the MND definitions, is referring to commute trips and not to employer business, that are categorised as 'Other' in the MND data.
5.1.4. Initially, when aggregating the TEMPRO purposes into two categories of Work and Other, education was assigned into other grouping. These results are presented in Table 5-1, and demonstrate a 12\% difference in the purpose split between the two datasets.
5.1.5. A second comparison was carried out with the TEMPRO definitions redefined whereby education was moved into the Work grouping, rather than Other. These results are presented in Table 5-2 and show the Work/Other purpose split between the MND matrix and TEMPRO to be very close.

Table 5-1 - Work/Other Split Proportions - Education aggregated with 'Other'

Purpose	MND	TEMPRO
Work (HB and NHB)	0.33	0.25
Other (HB and NHB)	0.67	0.75

Table 5-2 - Work/Other Split Proportions - Education aggregated with 'Work'

Purpose	MND	TEMPRO
Work (HB and NHB)	0.33	0.38
Other (HB and NHB)	0.67	0.62

5.2 COMPARISON WITH TEMPRO - HOME BASED / NON-HOME-BASED SPLITS

5.2.1. The home based / non-home-based proportions have been compared against TEMPRO, as per the purpose split, for all modes for an average weekday. Education trips in TEMPRO have been aggregated into Work for the data presented in the Table 5-3.
5.2.2. The results demonstrate that the home-based trips are slightly underrepresented in the MND. However, as mentioned earlier, at this stage the MND data still includes the Light Goods Vehicles (LGVs).

Table 5-3-HB/NHB Split Proportions

Purpose	MND	TEMPRO	Difference
HB Work	0.24	0.36	-0.12
HB Other	0.51	0.53	-0.02
NHB Work	0.09	0.02	0.07
NHB Other	0.16	0.09	0.07

6 TRIP LENGTH DISTRIBUTION CHECKS

6.1 COMPARISON WITH NTS

6.1.1. A prior expected weakness of mobile phone data is that there will be a shortfall in short distance trips. This can be caused by trips not moving outside of the coverage age of a single cell.
6.1.2. The trip length distributions for the MND data have been compared to those from National Travel Survey (NTS) data for North Yorkshire, to assure a statistically significant sample.
6.1.3. Figure $6-1$ below confirms that there is a significant shortfall in short distance trips compared to NTS.

Figure 6-1 - TLD Comparison: All purposes and all modes

6.1.4. Highlighted the gap in the short distance trips, if we represent only the trips above 5 km we can see that the TLD is well represented with still a gap in trips below $5-10 \mathrm{~km}$ and an overrepresentation of long-distance trips ($>100 \mathrm{~km}$).

Figure 6-2 - TLD Comparison: All purposes and all modes (>5 kilometers)

7 CONCLUSIONS

7.1.1. The all-day weekday MND matrix has 62% of cells with non-zero trips. By time period, this ranges from 38\%-50\%.
7.1.2. The vehicle split showed that the HGV component represents only around the 3% of the total trips.
7.1.3. For motorised trips (excluding HGV), most trips in the matrix are the Internal from/to external trips (48\%). Long distance trips between the external regions represent a significant 39% whilst the intrastudy area trips make up a small proportion (around 14\%), of the travel demand from Selby district.
7.1.4. As regard HGV, most trips in the matrix are the external (around 63%). Intra-study area trips make up around 33%.
7.1.5. The comparison with TEMPRO total trips showed that the MND matrix is significantly underrepresenting the total amount of trips in the study area.
7.1.6. The TLD analysis showed that a consistent part of this gap is produced by a shortfall in short distance trips for all purposes combined. These gaps will be infilled using the synthetic matrix.
7.1.7. The purpose split between 'Work' and 'Other' in the MND dataset closely reflected the purpose split in TEMPRO when education and work where defined together in TEMPRO. The matrix build will initially assume that the 'Work' category also contains education trips.
7.1.8. In the MND the category Other includes "employer business" and "Other' trips. A method will be required to segment the MND into commute, business, and other user classes.
7.1.9. Other non-car highway trips -LGVs and bus - will need to be subtracted from the motorised component.
7.1.10. The analysis of the HGV matrix showed that the MND matrix is underrepresenting the HGV trips in the study area. Therefore, additional data will be required to fill these gaps in the matrix.

First Floor
3 Wellington Place
Leeds
LS1 4AP
wsp.com

Appendix C

SYNTHETIC MATRIX CALIBRATION

Selby District Strategic Transport Model
Local Model Validation Report
Appendix - Synthetic Matrix Gravity Model Calibration

24H Home-Based Business

Trip-Length Distribution - Area A

24H Home-Based Commute

Trip-Length Distribution - Area A

Selby District Strategic Transport Model
Local Model Validation Report
Appendix - Synthetic Matrix Gravity Model Calibration

24H Home-Based Education

Trip-Length Distribution - Area A

24H Home-Based Other

Trip-Length Distribution - Area A

Selby District Strategic Transport Model
Local Model Validation Report
Appendix - Synthetic Matrix Gravity Model Calibration

24H Non Home-Based Business

Trip-Length Distribution - Area A

24H Non Home-Based Education

Trip-Length Distribution - Area A

Selby District Strategic Transport Model

Local Model Validation Report

Appendix - Synthetic Matrix Gravity Model Calibration

24H Non Home-Based Other

Trip-Length Distribution - Area A

Appendix D

NETWORK ACCEPTANCE CHECKS

DATE:	23 March 2023	CONFIDENTIALITY: Confidential	
SUBJECT:	Highway Network Acceptance Checks		
PROJECT:	Selby District Strategic Transport Model	AUTHOR:	Sam Callaghan
CHECKED:	Narendra Sadhale	APPROVED:	Paul Smith

HIGHWAY NETWORK ACCEPTANCE CHECKS

Introduction

WSP has been commissioned by North Yorkshire County Council (NYCC) and Selby District Council (SDC) to develop the Selby District Strategic Transport Model (SDSTM). A key component of this is the development of a SATURN highway assignment model.

This technical note describes the highway network tests and checking which were undertaken prior to, and further reviewed during, the calibration and validation process. It will be attached as an Appendix to the Local Model Validation Report (LMVR) which includes sections detailing network data and development, including the coding approaches, in more detail.

Purpose of the Tests

This note sets out the requirements for a series of tests to provide evidence that:

- The network building is complete to the agreed standard;
- The network and inputs have been appropriately checked, the SATURN warnings have been reviewed and formal testing has been carried out against a list of potential errors; and
- The network coding is satisfactory, as far as can be determined, before commencement of the calibration/validation stage.

The overall objective of the process is to ensure, as far as practically possible, that coding errors arising from human error in the network building are eliminated before calibration/validation process starts. The initial network should be coded in accordance with the agreed principles defined in the Model Specification Report (MSR).

However, it is recognised that there may be subsequent amendments to the network following feedback from the network calibration/validation process. Further detailed review and updates to network coding were undertaken a later stage based on feedback from NYCC and SDC.

For each test, background information on the purpose is provided along with a list of information that will be reviewed. Furthermore, the acceptance criteria will also be used as the basis for assessing whether the network meets the requirements of the study for this stage of the model development.

Description of Tests Undertaken

The following tests are to be carried out to ensure the network coding is in a satisfactory state before commencement of the calibration/validation stage. There were six types of test carried out, as described below:

- Test 1 - Completeness Check

This is to ensure that the network produced is complete according to the Model Specification Report.

- Test 2 - SATURN Compilation Check

This is to ensure that all the errors/warnings produced by SATNET has been reviewed and checked.

- Test 3 - Inspection of Key Junctions

This is to ensure that all the key junctions within the study area have been coded correctly.

- Test 4 - Network Routeing

This is to ensure that routeing check on the unloaded network is plausible and realistic.

- Test 5 - Link Consistency Tests

This is to ensure that link type, distance, speed limit, etc. are consistent between directions and along a road.

- Test 6 - Flat Matrix Assignment Test

This is to ensure that model assignment with a flat matrix produce plausible results of routeing and also to investigate whether or not locations with excessively high delays are as a result of significant flows or due to coding error.

The test definitions are based on the approach defined by the Network Technical Consistency Group on the Highways England Regional Model project.

The following chapters describe in detail the steps and findings of each of the tests for the Selby District highway assignment model.

TEST 1 - COMPLETENESS CHECK

Background

The purpose of this test is to prove that the network produced is complete, including simulation and buffer network. Upon the completion of this test, it can be confirmed that the initial network development process has been concluded in accordance with the model specification.

Information Required

The information with regard to this test will be provided, as below:

- Map of the simulation and buffer network, as agreed with NYCC and SDC;
- Source of signal timing for signalised junctions: e.g. from NYCC and SDC, from donor models, or using template signal junction coding;
- A map showing locations of signalised junctions by different sources;
- A spreadsheet providing signal timings for signalised junctions, with a technical note detailing signal data collection and assumption; and
- The full network in both GIS and SATURN network DAT formats.

Acceptance Criteria

The acceptance checks for this test would ensure:

- Coding of the network is complete, except for omissions previously agreed by the project team;
- Network coverage is as specified in the Model Specification Report (MSR) for both simulation and buffer networks;
- Reporting total number of nodes coded and checked; and
- The density of the network is as specified in the MSR.

Summary

Figure 1 shows the network that has been coded for the study region and Figure 2 shows the network coverage for the external area. As agreed with NYCC and SDC and specified in the MSR, all the roads within the study area boundary have been coded in the simulation network and roads outside the study area boundary have been coded as buffer network.

A total of 8,258 links have been coded in the SDSTM highway network covering a combined modelled distance of $12,967 \mathrm{~km}$, as summarised in Table 1.

A total of 3,793 nodes have been coded in the SDSTM highway network as summarised in Table 2.
Link and node checking is covered in the subsequent tests.
Inspection of key junction coding is covered in Test 3.

Table 1 Summary of Link Coding by Road Type

Road Type	Number of Modelled Links	Total Modelled Length (km)
Motorway	429	3,061
A Road	2,583	5,368
B Road	376	388
Local Road	3,262	$\mathbf{1 , 6 9 1}$
Total	$\mathbf{6 , 6 5 0}$	$\mathbf{1 0 , 5 0 8}$

Table 2 Summary of Junction Coding by Node Type

SATURN Type	Description	Number of Nodes
0	External node	1,564
1	Priority junction	1,320
	Exploded roundabout	101
	Motorway merges/diverges	68
2	Mini-roundabout	23
3	Signalised junction	48
	Exploded signalised roundabout	3
4	Dummy	0
5	Roundabout (with U-turns)	23
n / a	Zone centroids	643
	Total	$\mathbf{3 , 7 9 3}$

いい|

Figure 1 Model Network: Fully Modelled Area

Figure 2 Model Network: Buffer and External Areas

TEST 2 - SATURN COMPILATION TEST

Background

The purpose of this test is to prove that the network, including the buffer network, may be compiled in SATURN with the option "Set WRIGHT = TRUE" without raising unacceptable errors. The test should confirm that the initial network development has been successfully built using SATNET.

Information Required

The following information will be reviewed:

- A list of SATURN warnings, with annotation or accompanying documentation explaining the serious warnings and why they can be safely ignored. Specifically, this will include a table summarising the "SATNET Network Building Report" with the total number of serious warnings and Non-Fatal errors and comments stating that why these are acceptable.

Acceptance Criteria

The acceptance checks should ensure that:

- There should be no Fatal or Semi-Fatal errors as specified by SATURN; and
- For other SATURN serious warnings or warning, a satisfactory explanation for each warning should be provided for the coding with the core modelled area.

Summary

Tables 3 and 4 provides the quantity of warnings by type and a list of all the warnings produced from SATNET respectively.

Table 3 Summary of Total Warnings / Errors from SATNET

SEGMENT	WARNING	SERIOUS	NON-FATAL	NAFF	FATAL	Total
\&OPTION	0	0	0	0	0	0
NETWORK TITLE	0	0	0	0	0	0
\&PARAM	0	0	0	0	0	0
11111 SIMULATION	706	2,013	0	0	0	2,719
22222 SIM CCs	2	1	0	0	0	3
33333 BUFFER	8	0	0	0	0	8
44444 RESTRICTs	2	0	1	0	0	3
55555 CO-ORDS	1	0	0	0	0	1
66666 ROUTES	552	0	10	0	0	562
77777 COUNTS	6	0	0	0	0	6
88888 GEN COSTS	0	0	0	0	0	0
Total	1,277	2,014	11	0	0	3,302

Table 4 Detailed List of Warnings from SATNET

WARNING NUMBER	TEXT	COUNT	COMMENTS
2	Turn saturation flow less than the minimum	20	Reviewed - Sat flows represent nature of the road/turns
6	A priority junction has no minor but multiple major arms	1	Reviewed - Represents 2019 arrangement

WARNING NUMBER	TEXT	COUNT	COMMENTS
73	Bus route with U-turns at nonsimulation nodes	37	Ignore.
76	Possible underestimated stack capacity >5 at XY nodes	1	Ignore.
79	An X-turn at signals is only in unopposed stages - no TAX	2	Observed signal data coded.
82	Cycle time is very high > 999s	5	Nodes at these location represent railway crossings with high cycle times
85	Column 6 on a bus route must be blank	39	Ignore.
92	A zone connected under 33333 might be better coded under 22222	465	This is due to the high volume of spigots that have been used to code zone connectors. No further action required.
96	Give-ways have both shared and unshared lanes	38	Coding reviewed - shared lanes on roundabouts.
98	Possible opportunity for a Clear Exit Priority Modifier?	30	Ignore.
109	Some of your in-links may not have been defined in strict clockwise order	147	Ignore.
111	No opposing turns found for a turn with a Priority Marker	5	Coding of turns and staging based on observed junction layout and signal data respectively.
112	A zone has one or more centroid connectors connected to external simulation nodes	1	Ignore.
135	2+ give-way turns in a single lane: Major arm priority jcn.	843	Multiple movements from minor arms are sharing a single lane or a single lane with flare.
137	Turn saturation flows per lane differ widely. See 6.4.6.3	865	Coded saturation flows based on observed junction layout.
138	Saturation flows differ widely between roundabout arms	2	Coded saturation flows based on observed junction layout.
150	A nearside merge into a turn not in its inside lane	1	Ignore.
152	A single lane arm at signals which includes an X-marked turn	21	Coding reviewed - lane allocations are replicating observed junction layout.
154	X-turn shares identical lanes with the turn inside it, but that turn could use lanes further inside to avoid being blocked by the X-turn	1	Multiple movements from minor arms are sharing a single lane.

WARNING NUMBER	TEXT	COUNT	COMMENTS
156	Che exit link for a merge has GE lanes than the 2 entries	1	Coding reviewed - edge of simulation area impact on assignment negligible.
157	The mid-link capacity is either >> or << stop-line sat flow	80	Coding reviewed, particularly in key corridors, during calibration.
160	Merge turns enter a link which has significantly fewer lanes	7	Reviewed - No change
168	A turn has been banned but other turns at the roundabout use the same exit arm	5	Banned U-turns at roundabouts. No further action needed
178	Strange stage sequencing for an X- turn at signals	1	Signal coding based on observed data received
183	LCY for a node differs from its neighbours	34	lgnore.
222	A bus route "Stutters", i.e it goes twice through link A-B-A-B	2	Ignore.
237	Unidentified node in a bus route	1	lgnore.
253	lignore.The number of possible U-turns at external simulation nodes exceeds the number allowed for checking in SATALL		

TEST 3 - INSPECTION OF KEY JUNCTIONS

Background

The purpose of this test is to demonstrate that the key junctions and intersections, that by definition have the greatest influence in the model calibration and validation, are coded appropriately. The test will focus on the subjective aspects of the junction coding process.

The test should therefore confirm that:

- The characteristics of the selected key junctions/intersections have been appropriately characterised in a consistent manner; and
- For each selected key junctions/intersections, the junctions have been correctly coded as agreed in the MSR.

Information Required

Identify all the key junctions/intersections within the core modelled area. For SDSTM, this will primarily focus on the key corridors and major intersections on routes around the Selby District area.

Acceptance Criteria

To ensure that the process uses an evidence-based approach, a detailed check of the coded network with available source of information including OS ITN, aerial photography and signal timing sheets, using the pro-forma in Table 5.

Table 5 Junction Coding Checking Pro-Forma

Junction Type	Items to be tested	Acceptance
All Junctions	Junction type	Correct definition
	Number of lanes at stop-line	Consistent and appropriate representations based on the available data sources
	Number of lanes on the main (mid-) link approach	
	Main Link type classification (and resulting cruise speed)	
	Representation of flares and the coded length(s)	
	Selected GAP values within pre-determined range	
	Lane definitions for each turn	
	Representation of Bus Lanes	
	Turn Priority Markers	
	Saturation Flow	

	Stacking capacity	
Specific Checks by Junction Type		
Signalised	Coding of Filters	Correct based on signal timings data
	Definition of Stages	
	Cycle time and Offset	
	Green times	
	Inter-green times	
Roundabout	Time to circle roundabout	Consistent and appropriate representations based on the available data sources
Priority	Right turn on major arm definition	Consistent and appropriate representations based on the available data sources

The quality of the model will then be established to determine if there are any serious deficiencies or differences in approach that may have a detrimental impact on the model calibration and validation process. If required, a suitable mitigation process will be determined.

Summary

All the major junctions/intersections in network have been coded. The network has been then reviewed and amended where appropriate to accommodate the detailed zones plan for the study area. The junction coding was based on Google Maps with the following information:

- Junction type: priority, signalised junction, normal roundabout, large roundabout, and signalised roundabout;
- Junction layout: number of approaches, number of lanes on approach, flare lane, roundabout diameters for roundabouts.

Signal timing templates were obtained for the majority of study area signalised junctions from NYCC and SDC.

TEST 4 - NETWORK ROUTEING

Background

The purpose of this test is to prove that the network routeing for all vehicle types, are sensible, particularly for longer distance trips.

The test should then confirm that the route choice through the coded network, based on unloaded conditions, are realistic and appropriately differentiates between the principle vehicle groups.

Information Required

A series of key strategic routes in the core modelled area will be identified and used as the basis of the test. Plots of paths for each identified pairs of places will then be presented showing how vehicles route through the network.

Acceptance Criteria

Paths should show plausible routeings, in particular for areas that are unexpectedly avoided or unexpectedly attractive on the unloaded network.

Differences in routeings between the principle vehicle groups (arising from banned links and turns) should be justified through reference to the source data.

Summary

Guidance presented in TAG Unit M3.1 proposes the number of routes to be tested is derived from the formula:

- Number of OD Pairs = (Number of Zones) $)^{0.25} \mathrm{x}$ Number of User Classes

Based on the final zone system for the base year with 643 zones, this amounts to 25 routes.
Figures 3 to 27 provide checks on routeing between different OD pairs. The routes all appear plausible with traffic following suggested routes validated against Google Maps route planner.

Figure 3 Routeing Check: Manchester to Hull

いい|

Figure 4 Routeing Check: Hull to Manchester

Figure 5 Routeing Check: Birmingham to York

いい|

Figure 6 Routeing Check: York to Birmingham

Figure 7 Routeing Check: Leicester to Newcastle

いい|

Figure 8 Routeing Check: Newcastle to Leicester

いい|

Figure 9 Routeing Check: Cambridge to Middleton

Figure 10 Routeing Check: Lincoln to Penrith

いゆ|)

Figure 11 Routeing Check: Huddersfield to Riccall

いい|

Figure 12 Routeing Check: Riccall to Huddersfield

いい|

Figure 13 Routeing Check: Doncaster to Appleton

Figure 14 Routeing Check: Appleton to Doncaster

Figure 15 Routeing Check: Crowle to Tadcaster

Figure 16 Routeing Check: Tadcaster to Crowle

いい|

Figure 17 Routeing Check: Millington to Sherburn in Elmet

\|S|"

Figure 18 Routeing Check: Knottingley to York

Figure 19 Routeing Check: York to Knottingley

Figure 20 Routeing Check: Eggborough to Tadcaster

Figure 21 Routeing Check: Tadcaster to Eggborough

いい|

Figure 22 Routeing Check: Knottingley to Selby

いい|

Figure 23 Routeing Check: Selby to Knottingley

いい|

Figure $\mathbf{2 4}$ Routeing Check: Barlby to Sherburn in Elmet

いい|

Figure 25 Routeing Check: Barlby to Sherburn in Elmet

Figure 26 Routeing Check: Norton to Escrick

いい|

Figure 27 Routeing Check: Camblesforth to Tadcaster

TEST 5 - LINK CONSISTENCY TESTS

Background

The purpose of this test is to check that the network link types are consistent along a road and in both directions, to confirm that network lengths and coded link capacities are appropriately coded. The test should confirm that the network structure has been constructed in accordance with the model specification report.

Information Required

The following information should be required for the purpose of the tests:

- Map showing link types for each direction of a link. Changes in link types along the same stretch of road should be compared with source data. Map of cruise speed as derived from Trafficmaster Journey time data will be used to determine the appropriate link type (i.e. speed-flow curve).
- Maps showing the extent of the types of speed-flow curves and capacities used in the simulation area. For buffer network, the assumption of unlimited capacity with speed taken from the Trafficmaster JT data will be used.
- Tables showing the SATURN link lengths compared with crow-fly distance; and tables showing SATURN link lengths compared with GIS data.

Acceptance Criteria

For the core modelled area:

- There should be no change in link type between directions, unless this can be justified by difference in number of lanes, speed limit;
- Dual carriageway should have the same link type link both directions, except where indicated by difference in speed limit, number of lanes, etc. from source data; and
- Change in link type should be consistent providing changes in speed limit when moving toward town centre from rural area.

For the non-core modelled area:

- If any significant findings arise from the checks, a series of mitigation measures will be implemented either at this stage or during calibration/validation stage.

Summary

Table 6 provides a summary of the difference between coded link lengths from SATURN compared to crow-fly distance.

It is noted from a sample of checks that the -ve (i.e. coded length < crow-fly distance) are due to the coded length being input as an integer, whereas the crow-fly distance is calculated based on XY coordinates of the nodes, i.e. not rounded to an integer.

Table 6 Coded Link Length vs. Crow-Fly Distance Summary

Distance	Percentage Difference (-ve for crow-fly greater)									
	<-20	$\begin{gathered} -20 \text { to } \\ -15 \end{gathered}$	$\begin{gathered} -15 \text { to } \\ -10 \end{gathered}$	$\begin{gathered} -10 \text { to } \\ -5 \end{gathered}$	-5 to 0	0 to 5	5 to 10	$\begin{gathered} 10 \text { to } \\ 15 \end{gathered}$	$\begin{gathered} 15 \text { to } \\ 20 \end{gathered}$	> 20
0-500m	0	0	0	0	1241	3350	268	98	63	121
500-1000m	0	0	0	0	165	831	103	46	23	19
1000-2000m	0	0	0	0	99	588	111	58	20	25
2000-5000m	0	0	0	0	46	358	151	35	28	8
5000-10000m	0	0	0	0	22	89	43	12	16	4
10000-20000m	0	0	0	0	4	57	12	12	2	6
Over 20000m	0	0	0	0	18	34	44	22	4	2
All	0	0	0	0	1595	5307	732	283	156	185

TEST 6 - FLAT MATRIX ASSIGNMENT TEST

Background

The purpose of this test is to ensure that the model assignment with a flat matrix produce plausible results in terms of routeing and also to investigate whether or not locations with excessively high delays are as a result of significant flows or due to coding error.

Information Required

Plots identifying key strategic places in the core modelled area used to check routeing with additional bandwidth plots showing the magnitude of traffic flow on links in the core modelled area and links where high delays occur.

Acceptance Criteria

Paths should show plausible routeings, in particular for areas that are unexpectedly avoided or unexpectedly attractive on the unloaded network.

Differences in routeings between the principle vehicle groups (arising from banned links and turns) should be justified through reference to the source data.

Traffic flow bandwidth plots should show key routes in the network carrying more traffic than other routes.
Delay plots should show congestion occurring on key routes with significant traffic flows particularly in urban areas.

Summary

Figures 28,30 and 32 are bandwidth plots which show the magnitude of traffic flow on links across the SDSTM study area. The plots suggest the magnitude between the key strategic links and more minor links is correct with routes such as the A19, A63 and M62 carrying more traffic than the B- and C- rural roads.

Figures 29, 31 and 33 are bandwidth plots which show the magnitude of delay on links across the SDSTM stud area. The plots suggest the magnitude of delay across the network is fairly insignificant, even in the more rural areas and Selby town.

いい|

Figure 28 Flat Matrix Flow Plot: AM Peak

Figure 29 Flat Matrix Delay Flow Plot: AM Peak

Figure 30 Flat Matrix Flow Plot: Inter Peak

Figure 31 Flat Matrix Junction Flow Plot: Inter Peak

いい|

Figure 32 Flat Matrix Flow Plot: PM Peak

Figure 33 Flat Matrix Junction Flow Plot: PM Peak

いい|"

Appendix E

PRIOR MATRIX SCREENLINE VERIFICATION

Appendix F

IMPACTS OF MATRIX ESTIMATION

SDTM LMVR APPENDIX

Impacts of Matrix Estimation

This appendix provides supplementary tables and graphs to the reporting of the impacts from matrix estimation that are documented in the main Local Model Validation Report.

TRIP LENGTH DISTRIBUTION

The impacts of matrix estimation on the mean trip length distribution and standard deviation are reported in the main report. Supplementary images are provided below.

ZONAL CELL VALUES

The regression statistics for the impacts of matrix estimation on zonal cell values are reported in the main report. Supplementary images are provided below.

ZONAL TRIP ENDS

The regression statistics for the impacts of matrix estimation on zonal trip ends are reported in the main report. Supplementary images are provided below.

SECTOR TO SECTOR MATRICES

The summary statistics for the impacts of matrix estimation on sector-to-sector movements are reported in the main report. Supplementary tables are provided below.

TRIP LENGTH DISTRIBUTION

AM Peak

Inter Peak

PM Peak

いゆ|)

ZONAL CELL VALUES

AM Peak

Inter Peak

PM Peak

ZONAL TRIP ENDS

AM Peak: Origins (left) and Destinations (right)

Inter Peak: Origins (left) and Destinations (right)

PM Peak: Origins (left) and Destinations (right)

SECTOR TO SECTOR MATRICES

AM Peak

Prior Matrix
Business

OD	1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{1}$	170	26	11	19	9	48	29	31	13
$\mathbf{2}$	60	57	6	5	7	82	22	23	15
$\mathbf{3}$	19	5	16	4	1	15	25	10	3
$\mathbf{4}$	24	6	5	104	28	30	49	143	25
$\mathbf{5}$	8	5	1	19	98	59	16	84	48
$\mathbf{6}$	36	55	12	16	35	1,772	298	437	319
$\mathbf{7}$	37	17	29	55	18	317	907	385	328
$\mathbf{8}$	28	15	8	138	80	492	367	1,604	490
$\mathbf{9}$	11	9	3	18	42	352	335	489	669

Commute

OD	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{1}$	1,001	134	53	92	44	279	95	108	30
$\mathbf{2}$	312	402	40	25	49	556	85	103	43
$\mathbf{3}$	60	12	94	17	7	67	78	29	5
$\mathbf{4}$	123	39	35	734	184	117	124	694	53
$\mathbf{5}$	40	26	7	81	648	245	18	356	232
$\mathbf{6}$	172	254	67	60	184	11,027	543	702	838
$\mathbf{7}$	175	53	134	203	30	523	6,853	830	119
$\mathbf{8}$	80	56	29	734	372	714	540	11,716	1,149
$\mathbf{9}$	20	12	15	33	151	907	114	1,121	3,716

OD	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{1}$	1,667	177	31	115	26	133	75	73	20
$\mathbf{2}$	258	812	26	21	30	406	58	48	27
$\mathbf{3}$	83	16	228	12	3	36	123	19	4
$\mathbf{4}$	233	23	16	968	128	61	152	530	37
$\mathbf{5}$	32	35	3	95	1,010	206	22	269	217
$\mathbf{6}$	101	248	30	30	125	13,364	532	655	608
$\mathbf{7}$	96	40	136	138	25	547	10,045	753	397
$\mathbf{8}$	68	31	17	445	231	740	718	14,322	947
$\mathbf{9}$	19	17	4	26	89	678	411	921	4,992

Lgv

OD	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{1}$	52	26	26	18	5	47	25	23	7
$\mathbf{2}$	31	67	23	17	17	148	22	21	10
$\mathbf{3}$	24	22	26	12	2	19	23	12	3
$\mathbf{4}$	23	18	15	163	33	44	62	131	31
$\mathbf{5}$	7	16	2	29	93	105	14	100	45
$\mathbf{6}$	38	114	18	37	58	651	408	483	556
$\mathbf{7}$	31	23	24	60	15	399	179	3,900	296
$\mathbf{8}$	25	21	11	107	84	521	3,856	597	1,507
$\mathbf{9}$	7	9	4	23	31	606	262	1,451	288

OD	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{1}$	11	7	6	21	9	9	9	10	$\mathbf{5}$
$\mathbf{2}$	7	8	6	8	7	26	11	11	4
$\mathbf{3}$	5	6	6	11	5	6	7	6	1
$\mathbf{4}$	13	12	14	206	33	21	39	159	18
$\mathbf{5}$	9	10	10	41	35	19	20	36	16
$\mathbf{6}$	9	28	6	17	13	148	267	323	205
$\mathbf{7}$	8	7	7	33	18	290	80	1,119	365
$\mathbf{8}$	12	12	8	128	28	319	1,287	124	732
$\mathbf{9}$	3	6	2	21	15	192	375	746	88

OD	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{1}$	163	58	34	35	8	57	48	54	22
$\mathbf{2}$	53	122	9	10	17	155	15	14	19
$\mathbf{3}$	48	19	25	10	2	18	28	14	5
$\mathbf{4}$	40	10	9	191	55	27	68	173	34
$\mathbf{5}$	8	13	1	37	112	89	12	111	55
$\mathbf{6}$	55	107	18	30	58	775	366	395	580
$\mathbf{7}$	65	18	23	91	22	344	211	3,920	394
$\mathbf{8}$	55	18	9	186	121	506	3,912	599	1,568
$\mathbf{9}$	12	12	2	25	43	650	290	1,481	282

PostME Matrix
Business

OD	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{1}$	189	23	10	22	7	43	27	37	12
$\mathbf{2}$	57	62	5	4	6	82	18	23	17
$\mathbf{3}$	22	7	20	6	1	18	25	11	3
$\mathbf{4}$	24	5	6	116	38	29	51	176	23
$\mathbf{5}$	6	5	1	20	108	53	10	92	45
$\mathbf{6}$	35	63	14	20	38	1,830	266	491	334
$\mathbf{7}$	36	15	27	68	17	270	892	441	346
$\mathbf{8}$	26	14	9	153	77	428	418	1,611	448
$\mathbf{9}$	10	10	3	14	51	367	328	450	656

Commute

OD	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{1}$	1,041	115	48	105	40	210	96	130	25
$\mathbf{2}$	304	438	33	21	52	514	69	102	46
$\mathbf{3}$	61	17	114	22	13	77	80	34	7
$\mathbf{4}$	120	33	37	822	251	103	132	831	56
$\mathbf{5}$	31	21	7	104	716	231	13	418	226
$\mathbf{6}$	170	302	76	72	242	11,401	532	831	867
$\mathbf{7}$	205	48	118	251	32	452	6,821	911	130
$\mathbf{8}$	70	47	33	761	362	545	559	11,748	1,145
$\mathbf{9}$	16	18	11	34	188	912	116	1,066	3,695

OD	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{1}$	1,711	155	25	138	28	106	75	84	19
$\mathbf{2}$	235	902	21	19	34	326	50	48	28
$\mathbf{3}$	74	21	319	18	4	40	108	21	4
$\mathbf{4}$	249	22	17	1,084	183	58	163	640	38
$\mathbf{5}$	26	36	2	134	1,163	175	14	329	206
$\mathbf{6}$	92	266	34	37	162	13,661	490	748	630
$\mathbf{7}$	100	36	92	173	26	471	10,020	840	425
$\mathbf{8}$	60	28	18	473	197	623	782	14,336	896
$\mathbf{9}$	18	21	4	23	121	691	407	869	4,970

OD	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{1}$	18	10	12	20	3	15	8	9	6
$\mathbf{2}$	8	16	4	5	5	36	7	7	6
$\mathbf{3}$	7	4	11	12	3	11	8	9	2
$\mathbf{4}$	21	10	15	129	49	21	41	183	18
$\mathbf{5}$	3	4	7	27	46	25	22	42	18
$\mathbf{6}$	11	34	9	14	12	159	205	390	218
$\mathbf{7}$	15	10	14	27	31	275	93	1,299	383
$\mathbf{8}$	10	7	5	151	49	333	1,416	128	795
$\mathbf{9}$	2	11	1	7	16	208	329	877	91

\|S|

Difference $<5 \%$ or GEH <4

Business
OD $\mathbf{1}$ $\mathbf{2 1}$ $\mathbf{2 1}$ $\mathbf{1 0 0 \%}$ 1 \checkmark \checkmark \checkmark $\mathbf{4}$ $\mathbf{5}$ 6 $\mathbf{7}$ 8 9 2 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark 3 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark 4 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark 5 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark 6 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark 7 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark 8 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark 9 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark

Inter Peak

Prior Matrix Business										PostME Matrix Business									
OD	1	2	3	4	5	6	7	8	9	OD	1	2	3	4	5	6	7	8	9
1	175	31	12	18	8	25	19	18	5	1	211	29	11	19	\%	22	16	20	6
2	28	28	3	2	3	39	10	10	6	2	25	32	1	2	3	44	7	9	7
3	12	3	8	3	1	7	16	5	1	3	12	2	9	2	0	7	17	4	1
4	15	2	2	67	15	12	31	92	11	4	17	1	2	78	16	10	24	108	11
5	9	3	1	16	73	26	8	45	24	5	9	3	0	17	82	22	5	49	26
6	24	41	7	12	25	1,282	187	270	195	6	22	47	7	12	22	1,327	186	296	203
7	19	10	15	31	9	191	685	223	237	7	18	8	18	32	7	195	704	219	197
8	17	9	5	86	43	258	223	1,098	272	8	20	8	4	110	47	281	237	1,102	281
9	6	5	1	12	25	200	225	292	445	9	7	6	1	11	28	209	210	289	438
Commute										Commute									
OD	1	2	3	4	5	6	7	8	9	OD	1	2	3	4	5	6	7	8	9
1	414	89	19	37	12	52	45	23	3	1	467	85	17	39	13	45	41	26	4
2	69	103	4	10	8	91	16	20	5	2	58	120	2	7	9	102	16	21	5
3	19	7	22	7	1	13	31	10	2	3	18	5	25	5	1	16	31	7	1
4	35	10	5	228	40	24	68	233	13	4	39	7	4	266	47	20	60	271	12
5	15	13	,	54	222	57	18	117	42	5	14	12	1	59	259	52	10	124	48
6	58	104	11	19	49	3,369	176	207	178	6	46	114	12	16	52	3,466	187	198	179
7	32	17	20	49	6	158	2,230	200	55	7	34	15	20	51	6	174	2,265	201	46
8	27	21	6	205	87	148	239	3,579	255	8	33	19	6	252	99	159	237	3,580	261
9	8	8	1	10	45	189	68	335	1,075	9	9	7	1	10	54	193	66	338	1,068
Other										Other									
OD	1	2	3	4	5	6	7	8	9	OD	1	2	3	4	5	6	7	8	9
1	2,108	287	69	156	39	151	111	89	20	1	2,322	269	62	170	41	129	96	97	21
2	311	532	20	19	29	345	58	46	25	2	270	608	11	13	32	361	44	44	30
3	77	21	93	14	4	34	106	25	4	3	80	15	112	11	3	36	95	21	3
4	132	20	13	791	121	54	166	665	36	4	153	14	10	920	149	41	139	763	36
5	45	27	5	126	782	175	29	267	149	5	47	27	2	150	913	150	18	278	161
6	154	355	34	56	180	14,695	771	985	810	6	129	373	35	50	157	14,991	772	1,087	838
7	112	58	82	160	27	766	10,516	919	732	7	110	48	80	166	20	798	10,634	904	608
8	87	45	23	629	256	970	973	14,522	1,186	8	102	40	21	783	284	1,064	1,017	14,538	1,226
9	22	24	4	38	143	819	728	1,256	5,240	9	25	28	3	39	158	851	688	1,251	5,210
Lgv										Lgv									
OD	1	2	3	4	5	6	7	8	9	OD	1	2	3	4	5	6	7	8	9
1	44	23	21	18	8	38	25	23	6	1	168	45	31	34	10	41	35	37	8
2	23	57	18	14	14	108	19	17	8	2	43	90	15	8	11	95	16	14	12
3	21	18	22	11	2	14	20	9	2	3	32	13	32	9	1	19	22	10	1
4	17	14	10	135	24	31	50	90	21	4	30	8	6	163	28	21	40	176	28
5	8	14	2	24	80	56	11	67	29	5	10	13	1	29	78	40	8	96	48
6	38	105	14	32	59	537	316	395	466	6	46	101	13	27	65	614	335	453	494
7	25	19	19	50	13	289	146	3,244	279	7	34	15	23	79	15	307	175	3,257	272
8	21	16	9	92	66	377	3,238	484	1,178	8	40	14	9	181	84	372	3,288	494	1,216
9	7	8	2	22	31	476	273	1,212	231	9	12	11	1	36	49	481	313	1,250	229
Hgv										Hgv									
OD	1	2	3	4	5	6	7	8	9	OD	1	2	3	4	5	6	7	8	9
1	9	6	6	19	9	13	9	11	4	1	18	6	13	17	2	15	7	11	4
2	5	8	5	7	5	22	8	9	3	2	8	16	6	6	2	29	6	11	9
3	4	5	5	10	4	4	5	6	2	3	14	5	10	13	5	10	6	6	3
4	12	10	12	178	29	17	43	141	16	4	14	8	10	116	31	19	40	169	18
5	8	10	9	37	31	16	19	28	14	5	3	3	6	25	33	11	17	56	8
6	8	25	4	16	12	117	243	296	182	6	16	28	,	19	10	132	181	388	198
7	9	10	7	32	16	254	72	1,014	369	7	10	6	5	29	13	210	68	1,198	370
8	7	13	8	106	27	288	1,137	122	678	8	8	11	6	157	54	359	1,308	128	803
9	4	5	3	20	14	182	377	677	83	9	4	9	2	27	22	197	379	801	81

PostME Matrix

Difference

Business									
OD	1	2	3	4	5	6	7	8	9
1	36	-2	-1	1	0	-3	-3	2	0
2	-3	5	-1	-1	0	5	-3	0	
3	1	-1	1	0	0	1	1	-1	0
4	2	-1	0	11	1	-2	-7	16	-1
5	0	0	0	1	9	-3	-3	4	2
6	-2	6	0	-1	-3	44	-2	26	8
7	-1	-2	3	1	-2	4	20	-4	-40
8	4	-1	-1	24	5	24	14	4	9
9	1	1	0	-1	2	9	-14	-3	-7

OD	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{1}$	53	-3	-1	2	1	-7	-4	3	0
$\mathbf{2}$	-11	17	-2	-3	1	10	0	1	0
$\mathbf{3}$	-1	-2	3	-2	0	3	0	-3	-1
$\mathbf{4}$	4	-4	-1	38	8	-4	-8	37	-1
$\mathbf{5}$	0	-1	-1	6	37	-5	-8	6	6
$\mathbf{6}$	-12	10	1	-3	3	97	11	-9	1
$\mathbf{7}$	1	-3	0	2	0	16	34	1	-9
$\mathbf{8}$	6	-1	0	47	12	11	-2	2	6
$\mathbf{9}$	1	-2	-1	0	9	4	-2	4	-7

Difference $<5 \%$ or GEH<4
Business

OD	1	81	
1	\checkmark	2	
2	\checkmark	\checkmark	
3	\checkmark	\checkmark	
4	\checkmark	\checkmark	
5	\checkmark	\checkmark	
6	\checkmark	\checkmark	
7	\checkmark	\checkmark	
8	\checkmark	\checkmark	
9	\checkmark	\checkmark	
Commute	81	8	
OD	1	2	

PM Peak

Prior Matria

usio									
00	1	2	3	*	5	5.	7	8	4
1	143	37	13	21	6	31	28	25	6
2	32	40	4	4	4	47	15	15	5
3	11	4	8	4	1	12	20	7	2
4	22	3	4	88	21	16	41	107	10
5	7	8	1	29	96	32	10	57	27
6	34	63	12	20	41	1,447	230	341	258
7	28	18	18	35	10	248	700	297	282
8	28	13	9	130	68	371	307	1,271	363
9	$9]$	9	2	16	37	273	268	363	488

Commote

00	1	2	3	4	5	E	7	8	4
1	1,098	288	60	133	38	171	157	89	23
2	162	351	15	38	25	243	67	65	14
3	52	31	84	31	5	67	134	43	16
4	122	26	19	718	98	65	234	704	29
5	40	48	6	236	749	166	50	408	138
6	314	531	67	134	238	10,579	676	875	900
7	111	88	73	157	27	550	8,441	636	150
8	144	122	35	803	365	913	1.049	11,157	1,144
3	38	45	4	69	226	858	175	1,082	3,432

Bther

OD	1	2	3	4	5	6	7	8	4
1	2,058	304	85	186	43	159	145	107	210
2	328	556	31	31	40	377	69	62	20
3	76	26	75	23	6	46	117	23	5
1	178	27	23	883	159	59	202	692	35
5	40	42	5	169	888	208	30	312	155
8	179	458	46	76	247	14.765	823	1,092	929
7	146	81	110	183	31	868	10,258	1,082	784
8	111	72	35	884	384	1,164	1,142	14,625	1.381
1	30	32	6	47	214	386	745	1,387	5,238

Lgv									
00	1	2	3	t	5	6	7	8	9
t	40	23	13	17	6	30	26	21	4
2	19	51	16	13	13	90	20	16	6
3	19	17	20	12	1	14	19	9	2
4	14	12	10	125	21	27	46	35	16
5	5	11	1	24	72	46	11	64	25
6	38	110	15	32	77	438	312	351	443
7	23	20	17	42	11	315	126	2,979	237
8	22	18	10	102	78	381	3.079	466	1,164
9	5	7	3	22	32	442	232	1,220	199
Hgu									
00	1	2	3	4	5	5.	7	8	4
1	5	3	3	10	5	4	7	7	2
2	3	3	4	3	3	12	6	1	2
3	2	2	3	5	2	1	3	3	1
$\stackrel{1}{*}$	6	5	6	93	16	8	20	78	3
5	4	5	5	19	16	7	11	14	6
6	言	13	2	10	7	86	149	169	97
7	7	6	5	21	10	153	37	665	240
\%	产	8	5	53	18	163	635	72	378
9	2	2	2	12	7	96	235	386	62

Posime Matria
Business

00	1	2	3	4	5	6	7	8	3
1	163	37	18	23	5	23	27	26	6
2	31	44	5	4	4	53	13	13	8
3	12	4	9	4	1	13	22	8	1
4	27	3	5	103	24	15	51	128	11
5	7	6	1	34	111	32	9	58	25
5	33	67	12	17	40	1,531	207	311	266
7	32	16	21	40	9	260	707	315	272
8	41	20	11	155	76	448	312	1,271	370
9	11	9	2	15	36	294	242	341	482

Commote

00	1	2	3	t	5	6	$?$	181	9
1	1.201	284	59	138	33	181	171	89	24
2	136	401	20	31	23	290	86	57	20
3	49	28	72	36	3	80	147	49	12
4	151	24	20	822	131	73	230	827	35
5	35	51	5	281	871	162	45	411	123
6	270	567	71	106	254	11,071	618	745	325
7	111	83	74	167	24	554	6,460	642	146
3	206	118	38	908	409	1,048	1.041	51,441	1,180
9	51	40	4	71	236	872	166	1,034	3,391

OD	1	2	3	4	5	6	7	8	9
1	2,278	282	32	196	39	144	140	108	21
2	301	643	40	27	38	423	65	43	28
3	88	23	84	26	4	52	121	30	5
4	216	24	24	1,024	202	57	247	821	39
5.	44	46	4	220	1.062	223	26	317	150
8	165	465	48	65	236	15,354	749	988	948
7	185	72	112	205	27	903	10,394	1,146	758
8	(5)	73	38	1,009	434	1,401	1,148	14,819	1,428
3	38	31	6	48	211	1,054	703	1,302	5,206

00	t	2	3	4	5	ε	7	181	9
1	109	49	19	23	6	38	44	38	4
2	37	80	9	9	14	81	18	13	11
3	31	11	19	9	1	13	30	7	1
4	30	7	3	156	15	18	68	172	22
5	9	17	1	27	84	44	11	62	33
5	57	101	14	29	63	567	287	348	448
7	49	18	18	79	18	278	148	3,028	228
8	46	13	11	189	89	338	3.128	472	1,217
9	17	10	2	50	47	449	290	1,238	198

Hgv									
D0	1	2	3	4	5	6	7	8	y
1	8	1.	3	10	2	2	10	1.	3
2	3	7	3	1	2	12	4	6	3
3	5	2	5	11	2	3	4	3	1
4	12	4	7	55	27	5	37	89	8
5	1	3	1	13	22	6	18	29	4
5	7	15	1	8	3	88	91	178	98
7	9	5	E	22	21	134	44	804	244
8	3	3	2	96	29	174	784	82	397
3	2	3	2	15	4.	102	272	500	52

\|S|"

Business

Business									
$\mathbf{O D}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
$\mathbf{1}$	20	-1	0	1	-1	-2	-2	$\mathbf{9}$	0
$\mathbf{2}$	-1	4	1	-1	0	6	-2	-2	3
$\mathbf{3}$	2	0		1	1	0	2	2	0
$\mathbf{4}$	5	0	0	15	4	-1	10	21	0
$\mathbf{5}$	0	0	0	5	15	0	-1	1	-3
$\mathbf{6}$	-1	5	1	-3	-1	84	-23	-32	-8
$\mathbf{7}$	4	-3	2	5	-2	11	7	19	-10
$\mathbf{8}$	13	1	1	26	9	78	5	0	6
$\mathbf{9}$	3	0	0	-1	-1	21	-15	-28	-7

Commute
Commute

| $\mathbf{O D}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{1}$ | 103 | -4 | 0 | $\mathbf{5}$ | -5 | 10 | 14 | 0 | 1 |
| $\mathbf{2}$ | -25 | 47 | 5 | -7 | -2 | 47 | -1 | -8 | 6 |
| $\mathbf{3}$ | -3 | -3 | 8 | 5 | -2 | 13 | 14 | 6 | -4 |
| $\mathbf{4}$ | 29 | -3 | 1 | 104 | 33 | 8 | 57 | 122 | 6 |
| $\mathbf{5}$ | -5 | 2 | -1 | 45 | 122 | -4 | -5 | 5 | -15 |
| $\mathbf{6}$ | -44 | 35 | 5 | -29 | 16 | $\mathbf{4} 92$ | -58 | -130 | 25 |
| $\mathbf{7}$ | 0 | -5 | 0 | 10 | -3 | 5 | 19 | 6 | -4 |
| $\mathbf{8}$ | 62 | -4 | 3 | 105 | $\mathbf{4 4}$ | 135 | -7 | -16 | 36 |
| $\mathbf{9}$ | 13 | -5 | 0 | 2 | 9 | 14 | -9 | -48 | -41 |

Difference $<5 \%$ or GEH<4

Business
OD $\mathbf{1}$ $\mathbf{8 1}$ $\mathbf{8 1}$ $\mathbf{1 0 0 \%}$ $\mathbf{1}$ \checkmark \checkmark $\mathbf{3}$ $\mathbf{4}$ $\mathbf{5}$ $\mathbf{6}$ $\mathbf{7}$ $\mathbf{8}$ $\mathbf{9}$ $\mathbf{2}$ \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark $\mathbf{3}$ \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark $\mathbf{4}$ \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark $\mathbf{5}$ \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark $\mathbf{6}$ \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark $\mathbf{7}$ \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark $\mathbf{8}$ \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark $\mathbf{9}$ \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark

Commute	$\mathbf{7 7}$	$\mathbf{8 1}$	$\mathbf{9 5 \%}$						
OD	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{1}$	\checkmark								
$\mathbf{2}$	\checkmark								
$\mathbf{3}$	\checkmark								
$\mathbf{4}$	\checkmark	\times	\checkmark						
$\mathbf{5}$	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark
$\mathbf{6}$	\checkmark								
$\mathbf{7}$	\checkmark								
$\mathbf{8}$	\times	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark
$\mathbf{9}$	\checkmark								

Other

| OD | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{1}$ | 220 | -21 | -3 | 10 | -4 | -16 | -5 | 1 | 0 |
| $\mathbf{2}$ | -26 | 87 | 10 | -4 | -2 | 46 | -3 | -9 | 8 |
| $\mathbf{3}$ | 12 | -2 | 10 | 3 | -2 | 6 | 4 | 1 | -1 |
| $\mathbf{4}$ | 37 | -3 | 1 | 141 | $\mathbf{4 3}$ | -2 | $\mathbf{4}$ | 129 | 4 |
| $\mathbf{5}$ | 4 | 4 | -1 | 51 | 175 | 14 | -4 | 5 | -4 |
| $\mathbf{6}$ | -14 | 7 | 2 | -11 | -11 | 589 | -74 | -104 | 19 |
| $\mathbf{7}$ | 40 | -9 | 1 | 21 | -4 | 35 | 35 | 55 | -26 |
| $\mathbf{8}$ | 40 | 2 | 2 | 145 | 49 | 240 | 6 | -6 | 38 |
| $\mathbf{9}$ | 8 | -2 | 0 | 1 | -3 | 68 | -42 | -85 | -32 |

Appendix G

SCREENLINE VERIFICATION

Appendix H

LINK FLOW VERIFICATION

Appendix I

JOURNEY TIME ROUTE VALIDATION

