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Disclaimer 

This report is for information only. It does not constitute legal, technical or professional 
advice. The Department of Energy and Climate Change does not accept any liability for any 
direct, indirect or consequential loss or damage of any nature, however caused, which may 
be sustained as a result of reliance upon the information contained in this report. 

All material is copyright. It may be produced in whole or in part subject to the inclusion of 
an acknowledgement of the source, but should not be included in any commercial usage 
or sale. Reproduction for purposes other than those indicated above requires the written 
permission of the Department of Energy and Climate Change. 

Suggested citation: 

Andrews, I.J. 2013. The Carboniferous Bowland Shale gas study: geology and resource estimation. 
British Geological Survey for Department of Energy and Climate Change, London, UK. 

Requests and enquiries should be addressed to: 

Toni Harvey 
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Foreword 

This report has been produced under contract by the British Geological Survey (BGS). It is based on a 
recent analysis, together with published data and interpretations. 

Additional information is available at the Department of Energy and Climate Change (DECC) website. 
https://www.gov.uk/oil-and-gas-onshore-exploration-and-production. This includes licensing 
regulations, maps, monthly production figures, basic well data and where to view and purchase 
data. Shale gas related issues including hydraulic fracturing, induced-seismicity risk mitigation and 
the information regarding the onshore regulatory framework can also be found on this webpage. 

Interactive maps, with licence data, seismic, relinquishment reports and stratigraphic tops for many 
wells are available at www.ukogl.org.uk. 

A glossary of terms used and equivalences is tabled at the end of the report (see page 48). 

All of the figures in this report are attached in A4 or larger format; thumbnails are also included in 
the text for reference. 
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minimal uplift baseline); data points lying well above the baseline are affected by the highest 
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1. Summary 

The assessment of shale gas resources in the UK is in its infancy. This report summarises the 
background geological knowledge and methodology which has enabled a preliminary in-place gas 
resource calculation to be undertaken for the Bowland-Hodder (Carboniferous) shale gas play1 

across a large area of central Britain (Figure 1). 

Marine shales were deposited in a complex series of tectonically active basins across central Britain 
during the Visean and Namurian epochs2 of the Carboniferous (c.347-318 Ma). In all of these basins, 
deep-water marine shales pass laterally into shallow-water shelf limestones and deltaic sandstones. 
Contemporary basins extend offshore beneath the East Irish Sea and the Southern North Sea. 

The marine shales attain thicknesses of up to 16,000 ft (5000 m) in basin depocentres (i.e. the 
Bowland, Blacon, Gainsborough, Widmerpool, Edale and Cleveland basins), and they contain 
sufficient organic matter to generate considerable amounts of hydrocarbons. Conventional oil and 
gas fields around most of these basins attest to their capability to produce hydrocarbons. 

The organic content of the Bowland-Hodder shales is typically in the range 1-3%, but can reach 8%. 

The maturity of the Bowland-Hodder shales is a function of burial depth, heat flow and time, but 
subsequent uplift complicates this analysis. Where they have been buried to sufficient depth for the 
organic material to generate gas, the Bowland-Hodder shales have the potential to form a shale gas 
resource analogous to the producing shale gas provinces of North America (e.g. Barnett Shale, 
Marcellus Shale). Where the shales have been less-deeply buried, there is potential for a shale oil 
resource (but, as yet, there is inadequate geotechnical data to estimate the amount of oil in-place). 

In this study, shales are considered mature for gas generation (vitrinite reflectance > 1.1%) at depths 
greater than c. 9500 ft (2900 m) (where there has been minimal uplift). However, central Britain has 
experienced a complex tectonic history and the rocks here have been uplifted and partially eroded 
at least once since Carboniferous times. Because of this, the present-day depth to the top of the gas 
window is dependent on the amount of uplift, and can occur significantly shallower than 9500 ft. 

The total volume of potentially productive shale in central Britain was estimated using a 3D 
geological model generated using seismic mapping, integrated with outcrop and deep borehole 
information. This volume was truncated upwards at a depth of 5000 ft (1500 m) below land surface 
(a suggested US upper limit for thermogenic shale gas production) or the depth at which the shale is 
mature for gas generation (whichever was the shallowest). 

The volume of potentially productive shale was used as one of the input parameters for a statistical 
calculation (using a Monte Carlo simulation) of the in-place gas resource (see Appendix A). 

1 The Bowland-Hodder shale gas play (or Bowland-Hodder shales) is the term used in this report for an 
amalgamation of shales of Visean to early Namurian age that includes the Bowland Shale Formation (and its 
equivalents) together with older shales which equate to the Hodder Mudstone Formation. The definition of 
the unit is discussed in more detail within this report.
2 See Section 5 for a comparison of the Carboniferous chronostratigraphies used by European and North 
American/international geologists. 

1 
© DECC 2013 



   

 
  

 

 

    
   

 

,· 

0 50 100 miles 

DECC/BGS shale gas studies 
(other areas not yet studied are 
also prospective for shale gas) 

Onshore petroleum exploration 
and development licences 
(as of April 2013) 

Bowland-Hodder Shale study area 
Prospective area for gas 
in upper Bowland-Hoader unit 
Prospective area for gas 
in lower Bowland-Hoader unit 

Urban areas 
LI Liverpool 
M Manchester 
S T Stoke -on-Trenl 
D Derby 
N Nottingham 
SH Sheffield 
LE Leeds 
Y York 
H Hull 

- ~-c~~ [9 
VT ,~ 

'c;: .. 
~ Jurassic Weald Basin 

area currently being 
assessed 

THE CARBONIFEROUS BOWLAND SHALE GAS STUDY: GEOLOGY AND RESOURCE ESTIMATION 

Figure 1. Location of the DECC/BGS study area in central Britain, together with prospective areas for 
shale gas, currently licensed acreage and selected urban areas. Other shale gas and shale oil plays 
may exist. 
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For the purposes of resource estimation, the Bowland-Hodder unit is divided into two units: an 
upper post-rift unit in which laterally contiguous, organic-rich, condensed zones can be mapped, 
even over the platform highs, and an underlying syn-rift unit, expanding to thousands of feet thick in 
fault-bounded basins, where the shale is interbedded with mass flow clastic sediments and re-
deposited carbonates. 

The upper unit is more prospective, primarily due to the better well control which demonstrates its 
closer resemblance to the prolific North American shale gas plays, in which the productive zones are 
hundreds of feet thick. The lower unit is largely undrilled, but where it has been penetrated it 
contains organic-rich shale intervals, whose lateral extent is unknown. 

This study offers a range of total in-place gas resource estimates for the upper Bowland-Hodder unit 
shales across central Britain of 164 – 264 – 447 tcf (4.6 – 7.5 – 12.7 tcm) (P90 – P50 – P10). It should 
be emphasised that these ‘gas-in-place’ figures refer to an estimate for the entire volume of gas 
contained in the rock formation, not how much can be recovered. 

There is considerable upside potential in the lower unit, but the resource estimation for this unit has 
a much higher uncertainty due to the paucity of well data so far and potentially less favourable 
lithologies. The estimated range of gas in place for this thick unit is 658 – 1065 – 1834 tcf (18.7 – 
31.2 – 51.9 tcm). The total range for estimated gas in place is 822 – 1329 – 2281 tcf (23.3 – 37.6 – 
64.6 tcm) (P90 – P50 – P10) for the combined upper and lower parts of the Bowland-Hodder unit. 

Total gas in-place estimates (tcf) Total gas in-place estimates (tcm) 
Low (P90) Central 

(P50) 
High (P10) Low (P90) Central 

(P50) 
High (P10) 

Upper unit 164 264 447 4.6 7.5 12.7 
Lower unit 658 1065 1834 18.6 30.2 51.9 
Total 822 1329 2281 23.3 37.6 64.6 

This large volume of gas has been identified in the shales beneath central Britain, but not enough is 
yet known to estimate a recovery factor, nor to estimate potential reserves (how much gas may be 
ultimately produced). An estimate was made in the previous DECC-commissioned BGS report 
(2010a) that the Carboniferous Upper Bowland Shale, if equivalent to the Barnett Shale of Texas, 
could potentially yield up to 4.7 tcf (133 bcm) of shale gas. In the absence of subsurface volumes of 
potential gas-bearing shale, this early estimate was based on the relative areal extent of the basins. 
Now, after detailed subsurface analysis, a “bottom-up” resource assessment of gas in-place has be 
made, which more accurately reflects the area’s shale gas potential. However, it is still too early to 
use a more refined methodology, like the USGS’s Technically Recoverable Resource “top-down” 
estimates which require production data from wells. In time, the drilling and testing of new wells will 
give an understanding of achievable, sustained production rates. These, combined with other non-
geological factors such as gas price, operating costs and the scale of development agreed by the 
local planning system, will allow estimates of the UK's shale gas reserves to be made. 

Other areas in the UK have shale gas and shale oil potential, and later in 2013 the Jurassic shales in 
the Weald Basin of southern England will be the subject of a further BGS/DECC study. 

3 
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2. Introduction to shale gas and resource estimation 

2.1. History of oil and gas exploration and production in the UK 

Exploration for oil and gas in the UK began onshore in the late 19th century, but subsequent land-
based activity has been episodic, with six principal phases yielding variable success (Evans 1990, 
Decc 2010b). The earliest reports of hydrocarbons date from 1836, and a well drilled at Heathfield in 
Sussex in 1895 produced sufficient gas to fuel a gas light for the railway station. The history of 
exploration through subsequent decades is detailed in DECC (2010b), with the largest gas fields 
discovered being Saltfleetby (Lincolnshire) and Kirby Misperton (North Yorkshire). Wytch Farm with 
associated gas (Dorset), Welton (Lincolnshire), Stockbridge (Hampshire) and Eakring 
(Nottinghamshire) have produced the most oil (DECC 2010b). Wytch Farm is the largest onshore oil 
field in Europe, but the total onshore production is small compared with offshore production and 
contributes only 1.5% of overall UK oil and gas total. Over 2100 wells have been drilled onshore for 
oil and gas. There are currently (April 2013) 30 oil fields and 8 gas fields producing onshore, plus 3 
coalbed methane and 18 vent gas (extraction of methane from abandoned coal mines) fields 
producing gas. 

In recent years (Figure 2), there has been a decline in the number of exploration and appraisal wells 
drilled for conventional oil and gas onshore, with a shift to coalbed methane (CBM), vent gas and 
most recently, to wells drilled for shale gas exploration. 

Figure 2. Numbers of onshore exploration and appraisal wells drilled in the past 20 years. 

Within the study area, significant amounts of gas have been discovered in conventional plays in the 
Bowland, Cleveland, Edale, Gainsborough, Humber and Widmerpool basins (Figure 3). There was 
also a natural build-up of methane in the Wyresdale Tunnel, Lancashire, which lead to the fatal 
Abbeystead explosion in May 1984 (Wilson et al. 1985, Smith et al. 2010). These occurrences provide 
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evidence for working petroleum systems in all of the sub-basins and the expulsion of gas from 
source rocks which have reached the gas window in the vicinity of the fields. 

Figure 3. Distribution of wells (not including coal-related CBM or vent gas) which have tested gas and 
oil in central Britain (from DECC data). 

Oil was commercially produced from Carboniferous oil shales in West Lothian between 1859 and the 
1940s, and although shale gas potential was highlighted in the 1980s (Selley 1987, 1996, 2005) it was 
only in the 13th Onshore Licensing Round in 2008 that companies specifically sought to explore for 
shale gas. Only one shale gas well has been hydraulically fractured, Cuadrilla’s Preese Hall 1 well 
during 2011, but that test was suspended before completion of the fracturing programme after two 
small earthquakes were induced (Green et al. 2012). 

2.2. Resources vs. reserves 

In simple terms, the resource estimate for any shale gas play is the amount of gas in the ground 
(some of which might never be produced), while the reserve estimate is a more speculative measure 
which describes the amount of gas that you might be able to extract given appropriate technology, 
economics and other factors. The recovery factor is an estimate of the proportion of the total gas 
resource that might be extracted, and it is generally expressed as a percentage. Recently, the 
Parliamentary Office of Science and Technology published a POSTbox note for policymakers to 
address the distinction between reserves and resources, which have often been confused by the 
media (POSTbox 2013). 

To some extent our ability to obtain reserve or resource figures in any hydrocarbon province is 
determined by the stage of exploration and the degree of production uncertainty. Gas in-place (GIP), 
original gas in-place (OGIP) or gas initially in-place (GIIP) are all the same estimate and these figures 
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are normally derived early in an exploration phase perhaps even before drilling takes place, for the 
benefit of shareholders and investors. These speculative values often find their way into the media. 
When substantive data from drilling and production rates become available, more reliable figures for 
reserves and resources can be estimated. But if only a few wells are drilled, there is a risk that the 
data they reveal may not be representative of large undrilled areas. A large variability in shale gas 
well productivity has been experienced in North America, where the gas from wells in ‘sweet spots’ 
far exceed the average recovery from wells across the play area. 

A third measure of the amount of gas is the concept of ‘technically recoverable resources’ (TRR) 
which the US Geological Survey (e.g. Charpentier & Cook 2011) use to estimate how much gas is 
likely to be extracted. The USGS methodology was modified for coalbed methane and shale gas and 
oil to use well production information (estimated ultimate recovery and well spacing) to better 
constrain estimates of recoverable volumes compared with their previous recovery factor based 
methodology used for conventional oil and gas. The US Energy Information Administration (EIA) 
estimates of TRR for shale gas and tight oil have changed significantly in recent years as new well 
performance data and USGS resource assessments have been integrated (USEIA 2012). However, a 
wide variety of other methodologies of estimating resource and reserve potential have been used by 
other organizations and these described by Pearson et al. (2012) along with the factors determining 
the viability of development. Technically or economically recoverable resources will fluctuate in time 
according to technological advances and commercial factors. 

In the US, the SPE Petroleum Resource Management System nomenclature (Figure 4, SPE 2007) 
defines total petroleum initially-in-place as that quantity of petroleum that is estimated to exist in 
naturally occurring accumulations. It includes that quantity of petroleum that is estimated, as of a 
given date, to be contained in known accumulations prior to production plus those estimated 
quantities in accumulations yet to be discovered (equivalent to ‘total resources’) and goes on to 
describe ‘contingent resources’ for which key conditions or contingencies that prevent commercial 
development must be clarified or proved to be viable. 

Figure 4. The Society of Petroleum Engineers’ framework for petroleum resource classification (SPE 
2007). 
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For the Bowland-Hodder shale, a number of hurdles must be overcome to economically produce gas. 
A way to describe the current state of understanding is illustrated by the diagram presented by the 
IEA (2011) (Figure 4a) which indicates five factors determining the viability of commercial 
development, or reserves. This report addresses only the resource size, the first stage of this 
process. 

Figure 4a. Factors determining the viability of natural gas developments (IEA 2011). 

2.3. Shale as a source and reservoir rock 

In conventional oil and gas accumulations, shales comprise the source rock from which 
hydrocarbons are generated following burial. Through geological time, these hydrocarbons migrate 
from the source rock, through carrier beds and ultimately accumulate in porous reservoirs (typically 
sandstone or carbonate) in discrete traps. These traps are typically located in structural highs on the 
margins of the basin centres. 

In the case of unconventional hydrocarbon accumulations (such as shale gas), this perceived wisdom 
is turned on its head – with shales acting as both source and reservoir rock, and the extensive basin 
centres becoming the exploration targets. Also, it is only within the last few decades that technology 
has enabled shale gas reservoirs to be exploited more economically. 

Exploration for shale gas presents a series of new challenges; not least the collection of a different 
suite of geological, petrophysical and geotechnical data across previously little understood and 
poorly studied parts of hydrocarbon provinces. 
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In shale gas plays, biogenic3 or thermogenic gas is present as two components: either adsorbed onto 
kerogen or clay particles, or present as free gas in pore spaces and natural fractures. 

Shale is predominantly comprised of very fine-grained clay particles deposited in a thinly laminated 
texture, but shale gas production may also come from layers of re-deposited limestone or thin clastic 
beds within the gross shale sequence. The clay particles fall out of suspension and become 
interspersed with organic matter, which is measured as the rock’s total organic carbon content 
(TOC). Through deep burial these muddy strata are compacted, and the pore water is expelled, 
resulting in a low-permeability layered rock called ‘shale’, which describes the very fine-grained and 
laminar nature of the sediment, not the rock composition, which is layered. Each of these layers 
creates a barrier to fluid migration, and this stacked system, called ‘composite layering’ is an 
effective vertical seal. 

Matrix permeabilities (the ability of fluids to pass through them) of typical shale are very low 
compared to conventional oil and gas reservoirs (<0.1 mD in shales versus >1 mD in conventional 
reservoir sandstones) which means that, in shale, hydrocarbons are effectively trapped and unable 
to flow or be extracted under normal circumstances, and they are usually only able to migrate to 
conventional traps over geological time. 

2.4. What defines a shale gas play? 

Table 2 summarises some of the most important geological, geochemical and geotechnical criteria 
that are widely used to define a successful shale gas play; some criteria are essential, others are 
desirable. The criteria are based on data from analogous shale gas plays in the USA, which are 
known to vary considerably from one another. 

Criteria Range of data and definitions UK data (availability and gaps) and 
definitions used in this report 

Organic matter content 
(TOC) 

Shales should be rich in organic matter, with 
total organic carbon (TOC) values > 2% (TNO 
2009, Charpentier & Cook 2011, Gilman & 
Robinson 2011). >4% (Lewis et al. 2004). Jarvie 
(2012) uses a cut-off of just 1% present-day 
TOC, and quotes averages for the 10 top US 
systems as 0.93-5.34% TOC. 

Some legacy data available, augmented by 
data from a study commissioned by DECC 
(Appendix B). A cut-off of TOC > 2% is used 
for a potentially viable shale gas resource. 

Gamma-ray values High gamma radiation is typically an indication 
of high organic carbon content. Gamma log 
response should preferably be ‘high’ 
(Charpentier & Cook 2011); 20 API above shale 
baseline (Schmoker 1980); >230 API (NPC 
1980); >180 API (DECC 2010a); >150 API, but 
lower if TOC is demonstrably high (D. Gautier, 
USGS, pers. comm.). 

The cut-off used has been selected on a 
well-by-well basis taking into account TOC 
and background shale gamma-log values, 
but is typically in the range 150 to 200 API. 

3 Natural gas can be created by two mechanisms: biogenic and thermogenic. Biogenic gas is created 
by micro-organisms that produce methane as a metabolic by-product in anoxic conditions such as in 
marshes, bogs, landfills, and shallow sediments. At depth, at greater temperature and pressure, 
thermogenic gas is created through the maturation of buried organic material. Biogenic gas can be 
encountered even if the underlying source rocks have not entered the thermogenic gas generation 
window. 
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Criteria Range of data and definitions UK data (availability and gaps) and 
definitions used in this report 

Kerogen type Kerogen should be of Type I, II or IIS 
(Charpentier & Cook 2011). Ideally, II (Jarvie 
2012). This indicates a planktonic, marine 
origin. 

Information on kerogen type is incomplete. 
Ewbank et al. (1993) identify Type II and III 
kerogen in various basins. Note: immature 
Type II kerogen can plot in the Type III field 
when matured for gas generation (Jarvie et 
al. 2005). 

Original hydrogen index 
(HIo) 

HIo preferably >250 mg/g (TNO, 2009, 
Charpentier & Cook 2011); 250-800 mg/g 
(Jarvie 2012). Note: it is important to have 
information on original, rather than present 
day, HI values. This conversion relies heavily on 
kerogen type. 

Only present day HI values are available for 
UK basins. 

Mineralogy/clay content Clay content should be low (< 35%) to facilitate 
fracking and hence gas extraction. Jarvie 
(2012) stresses the requirement of a significant 
silica content (>30%) with some carbonate, 
and presence of non-swelling clays. 

USEIA (2011a) quote ‘medium/high’ clay 
contents. There is scope for further work to 
bring together data from disparate sources 
and for new analyses. 

Net shale thickness Moderate shale thicknesses are considered 
ideal; >50 ft (15 m) (Charpentier & Cook 2011); 
>20 m (TNO 2009); >150 ft (Jarvie 2012). 
Conventional wisdom is that the ‘thicker the 
better’, but this may not necessarily be the 
case (Gilman & Robinson 2011); >25 m in <200 
m gross section (Bent 2012). Thick shale 
sequences (100s of metres) tend to be 
regarded as ‘basin centre gas’ plays rather than 
shale gas plays. 

Net potentially productive shale in the 
upper Bowland-Hodder unit is 200-3000 ft 
(60-900 m) thick; the lower Bowland-
Hodder unit is up to 10,000 ft (3000 m 
thick) (with the possibility of thin units of 
higher-than-background TOC). These latter 
thicknesses are much greater than in the US 
analogues. 

Shale oil precursor A shale oil precursor should ideally be 
identified. 

Oil and gas fields sourced from the 
Bowland-Hodder unit are both present in 
central Britain. 

Thermally maturity The shale should be mature for gas generation; 
Ro = 1.1 – 3.5% is widely accepted as the ‘gas 
window’. Charpentier & Cook (2011) use a 
cuff-off of Ro >1.1%. Smith et al. (2010) use 
1.1% as it demarcates the prospective area in 
the Fort Worth Basin; Jarvie (2012) quotes a 
higher cut-off of Ro >1.4%; 1.2 – 3.5% (BGR 
2012); <3.3% (TNO 2009). Conventional 
wisdom is 1.25 – 2%, but ‘empirical wisdom’ is 
1.75 – 3% (Gilman & Robinson 2011). 

In this study, the shale is considered to be 
mature for gas generation above an Ro 
value of 1.1%. 

Gas content/saturation Gas should be present as free gas (in matrix 
and fractures) and adsorbed gas. Gas contents 
should be 60-200 bcf/section (Bent 2012) or 
>100 bcf/section (Jarvie 2012). 

There is no published information on gas 
contents. Data from US analogues has been 
used. 

Depth minimum Depth >5000 ft (>1500 m) (Charpentier & Cook 
2011). Lower pressures generally encountered 
at shallower depths result in low flow rates. 

Shale resources shallower than 5000 ft 
(1500 m) below land surface have been 
excluded from this study. 

Shale porosity Typically 4-7%, but should be less than 15% 
(Jarvie 2012). 

Not known. 

Overpressure Slightly to highly overpressured (Charpentier & 
Cook 2011, Jarvie 2012). The Barnett Shale is 
slightly overpressured (Frantz et al. 2005). 

Not known, but Smith et al. (2010) mention 
‘the lack of overpressure’ in the Bowland 
Shale. However, recently-uplifted shales in 
central England should in theory be mildly 
overpressured. In resource calculations the 
pressure is assumed to be hydrostatic to 
give a conservative estimate of gas in place. 

Tectonics and burial 
history 

Preferably in large, stable basins, without 
complex tectonics (Charpentier & Cook 2011). 
Wells should be drilled away from faults where 
possible. 

Britain is located at the junction of several 
structural terrains and has undergone a 
complex geological history; the basins are 
also generally small. Locally, faulting occurs 
at high densities. 

Table 2. Criteria that are widely used to define a successful shale gas play. 
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2.5. Shale gas around the world 

Figure 5. Estimates of technically recoverable shale gas resources (tcf) for selected shale formations 
in 32 countries (USEIA 2011a; Bickle et al. 2012). Note: data were not available for Russia, Central 
Asia, Middle East, South-east Asia and central Africa. The figure of 20 tcf for the UK includes 19 tcf 
for the Bowland Shale and 1 tcf for the Liassic shales of the Weald Basin. 

The distribution of potential shale gas plays covers the globe (Figure 5), but it is only within North 
America that large-scale commercial extraction has been achieved to date. In the USA, ten shale gas 
plays hold the vast majority of the country’s technically recoverable reserves, and these are the only 
shale gas plays currently being exploited (USEIA 2011b, Jarvie 2012). 

2.6. How to estimate how much gas? 

Two fundamentally different methodologies are used to assess shale gas basins worldwide: 

1. In-place resource estimates based on a geological model, volumetrics and gas contents (‘bottom-
up approach’, as used by TNO and BGR), and 

2. Technically recoverable resource estimates based on well technology, well performance, well 
density (‘top-down approach’, as used by the USGS). 

In-place estimates with a robust connection to geological studies are widely considered an excellent 
tool for initial estimates, and BGS/DECC have employed this methodology. TNO (2009) and BGR 
(2012) also used this approach to make their preliminary assessments of shale gas resources in the 
Netherlands and Germany. While the second approach has been shown to be more reliable based 
on the US experience, no shale gas production data are yet available in the UK. 

USEIA (2011a) subsequently de-risked their equivalent gas in-place figure by a factor that ‘account[s] 
for the current level of knowledge of the resource and the capability of the technology to eventually 
tap into the resource’. This approach is not followed here because of the relative infancy of the UK 
shale gas industry. 
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3. Estimating the total in-place gas resource of the Bowland-Hodder 
unit in central Britain 

3.1. Introduction 

Carboniferous organic-rich basinal marine shales are present across a large part of central Britain 
and the study area extends from Merseyside to Humberside and Loughborough to Pickering (Figure 
6). The shales are either buried at depth or occur at outcrop. These organic-rich shales are 
recognised to be excellent source rocks, in which oil and gas matured before some of it migrated 
into conventional oil and gas fields (e.g. UK Midlands area, East Irish Sea) (DECC 2010b). The 
Bowland shale gas study area is bounded by complete erosion of the potentially prospective shales 
over highs to the south, by uplift in several areas where the prospective units are at outcrop, and by 
a facies change in the north and north-east to contemporary deltaic deposits. 

Figure 6. Location of the BGS/DECC shale gas study area, central Britain. Contains Ordnance Survey 
data © Crown copyright and database right 2013. 

3.2. Seismic, well and outcrop data 

This assessment of the Carboniferous basin shales of central Britain is based upon detailed seismic 
mapping using all available hydrocarbon well and stratigraphic borehole information along with 
outcrop geology. 

Although several thousand wells and boreholes have been drilled within the assessment area, only 
64 of these reached sufficient depths to record more than 50 ft (15 m) of net shale in the Early 
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Carboniferous section (Figure 7). Very few wells have drilled more than 1000 feet (300 m) of the 
section of interest. Key wells are discussed further in Section 3.6. 

Figure 7. Location of key wells, non-released wells and other wells providing important stratigraphic 
information used to assess the shale gas potential of central Britain. See Appendix C for details of 
well name abbreviations and stratigraphic information. 

All of the available seismic data was obtained from the UK Onshore Geophysical Library (UKOGL 
www.ukogl.org.uk). A total of c. 23,500 km (14,700 miles) of 2D and 1000 km² (390 mile²) of 3D 
seismic data (Figure 8) was loaded on an interpretive workstation. This mixed vintage data is of 
variable quality and often short line lengths (because seismic data onshore UK can only be shot over 
extant licences). An iterative approach was employed, finding seismic lines with the good evidence 
for horizon mapping, then circling back through the poorer quality lines, with an interpretation that 
was consistent with the detailed BGS outcrop mapping and the geological model. 
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Figure 8. Location of 2D seismic profiles and 3D surveys used to assess the shale gas potential of 
central Britain. 

The Bowland-Hodder shales (of the Craven Group, see section 3.4) are at outcrop in the Lancashire 
Forest of Bowland, Derbyshire Peak District, North Wales, at Gleaston (Cumbria) and a small area 
near Harrogate (Figure 9). These outcrops fringe areas where post-Carboniferous uplift has brought 
older rocks to the surface (e.g. the Derbyshire Dome and the Clitheroe and Slaidburn anticlines). 
These have been mapped by the BGS over a period of c.150 years and a large amount of literature 
has been published, but this has often concentrated on the sandstones, fossils and bed-by-bed 
stratigraphy. Since 2000, BGS has published three subsurface memoirs within the study area (Kirby 
et al. 2000, Smith et al. 2005, Pharaoh et al. 2011) (Figure 10). 

Lee (1991) and others have interpreted the regional gravity and magnetic data (Figures 11 and 12). 
In the northern half of the area, gravity lows correlate more closely with known rift basins, such as 
the Widmerpool and Edale gulfs and the Gainsborough Trough (GL7, GL8 and GL9 respectively). 
Anomaly GL 10, however, is thought to be related to the postulated concealed Market Weighton 
Granite adjacent to the lineaments associated with known basement highs, such as the Nocton and 
Askern-Spital highs, and ESE-trending lineaments associated with faults which controlled 
sedimentation, such as the fault on the southern margin of the Widmerpool Gulf. Licence operators 
have acquired proprietary high-resolution gravity gradiometry surveys which better image the 
structural fabric of the Carboniferous rift basins, but these are not yet in the public domain. 

Although the shales are widely distributed, their outcrops are not extensive and occur mainly in river 
and road cuttings (Figure 13). 
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Figure 9. The five main Craven Group outcrops in central Britain (from BGS 1:50,000 mapping). DD = 
Derbyshire Dome; CA = Clitheroe Anticline; SA = Slaidburn Anticline. 

Figure 10. Location of relevant BGS map sheets and memoirs across central Britain. See references 
for further details. 
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Figure 11. Bouguer gravity anomaly map for central Britain (from BGS mapping). Gravity low (GL) 
numbering from Lee et al. (1991). The Early Carboniferous structural framework lines are from Figure 
14. 

Figure 12. Magnetic anomaly map for central Britain (from BGS mapping). The Early Carboniferous 
structural framework lines are from Figure 14. 
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Figure 13. Typical outcrop of shale showing a slope deposit comprising imbricated rafted blocks of 
Hodder Mudstone Formation (Arundian age) on the flank of Ashnott High, Bowland Basin, 
Lancashire. © N.J. Riley/BGS 

3.3. Paleogeography and basin inversion 

Palaeomagnetic evidence suggests that Britain was situated in near-equatorial latitudes during 
Visean times, and the Carboniferous was a period of glacial eustasy, with sea-level fluctuations likely 
to have had a significant impact on deposition. Marine shales were deposited in a complex series of 
tectonically active basins across central Britain during the Visean and Namurian. A phase of Late 
Devonian to Early Carboniferous rifting produced a marked palaeo-relief with numerous basins 
occupying subsiding grabens and half-grabens and emergent highs associated with horsts and tilt-
block highs (Leeder 1982, 1988) (Figure 14). In general terms, hemipelagic marine shales (with mass 
flow deposits) were deposited in the basins and these pass laterally into extensive platform 
carbonates over the East Midlands Shelf and Derbyshire High. Equivalent basins occur offshore 
beneath the East Irish Sea (Jackson et al. 1995) and the Southern North Sea (Cameron et al. 1992). 
Cessation of most rifting processes occurred across large parts of the UK in the late Visean to be 
followed by a period of regional subsidence during which the pre-existing basins were generally 
filled in completely by more widespread marine deposition. 
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THE CARBONIFEROUS BOWLAND SHALE GAS STUDY: GEOLOGY AND RESOURCE ESTIMATION 

The Early Carboniferous basin model has become increasingly well defined, with supporting 
evidence coming from both the interpretation of seismic data and well penetrations (e.g. Kent 1966, 
Leeder 1982, 1988, Smith et al. 1985, Fraser et al. 1990, Fraser & Gawthorpe 1990, 2003). The 
exceptions are the basin beneath the Permo-Triassic Cheshire Basin4 where the thickness is 
unconstrained and in the Humber Basin, where the interpretation is tenuous due to the lack of well 
penetrations and poor seismic control (Figure 14). 

Figure 14. The Early Carboniferous basins and platforms of central Britain (modified after Fraser et al. 
1990, Kirby et al. 2000). CLH = Central Lancashire High; HH = Holme High. Note: the presence of Early 
Carboniferous basins beneath the Permo-Triassic Cheshire Basin (Smith et al. 2005 cf. Waters et al. 
2009) and a putative Humber Basin (Kent 1966, Hodge 2003) are both debatable (see text). 

The Blacon East 1 and Milton Green 1 wells in the Blacon Basin penetrate basinal facies of late 
Visean, Brigantian age (Smith et al. 2005) and Davies et al. (2004) indicate basinal facies extending 
south as far as the Dee Estuary and Wirral. There are no well data further east and the seismic data 
is of insufficient quality to provide evidence for the thickness of the unit. Smith et al. (2005, Fig. 27) 
show that deep-water sediments with limestone turbidites were deposited across the Cheshire Basin 
area during the Asbian-Brigantian, with platform carbonates to the west and also south-east of the 
Red Rock Fault. On the other hand, Mikkelsen & Floodpage (1997) and Fraser & Gawthorpe (2003) 
show carbonate shelf facies extending broadly across an area that Waters et al. (2009; Fig. 1) label as 
the ‘Holme High’. To avoid confusion, this report introduces the term ‘Blacon Basin’ for the Early 
Carboniferous basin which lies beneath the western part of the Permo-Triassic Cheshire Basin. 

4 The term Cheshire Basin is restricted to the Permo-Triassic basin; the presence of a poorly-defined 
Carboniferous depocentre, offset to the west, informally referred to as the ‘Blacon Basin’, is postulated. 
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THE CARBONIFEROUS BOWLAND SHALE GAS STUDY: GEOLOGY AND RESOURCE ESTIMATION 

The Humber Basin was first mentioned by Kent (1966) and is shown by Fraser & Gawthorpe (2003) 
and Hodge (2003). There are no well or seismic data to support this suggestion. Seismic 
interpretation reveals the presence of a Namurian-Westphalian thickening in the vicinity of the 
Tetney Lock 1 well. It could be interpolated that the Visean exhibits similar depositional thickening in 
this area, but importantly there is no evidence from the seismic data for a large-scale Visean half-
graben (although seismic data quality is poor at this level). Hodge (2003) alluded to basinal shales 
being the source for the gas in the Saltfleetby field; this could be the most compelling evidence for 
the existence of the Visean-Namurian Humber Basin. More well penetrations or better seismic 
resolution will be necessary to assess the extent of the prospective shale in the Humber Basin. 

The Bowland Basin5 is one of the largest basins in the assessment area (Figure 14), and it continues 
westwards beneath the Irish Sea. Near the coast the Bowland Basin is buried beneath a layer of thick 
Permo-Triassic rocks, whilst farther east, the centre of the same basin has been uplifted and eroded 
such that rocks of the Bowland-Hodder unit crop out at the surface. The Edale Basin is a fault-
bounded structure (Gutteridge 1991) that has a preserved cover of Millstone Grit and a relatively 
thin overlying unit of late Carboniferous Coal Measures locally also. The Gainsborough and 
Widmerpool troughs are broadly similar faulted basins to the Edale Basin, but the western, deepest 
part of the Widmerpool Trough was inverted and partially eroded prior to deposition of Permo-
Triassic rocks. Over the crest of the Widmerpool Trough basin inversion, all of the overlying Coal 
Measures and Millstone Grit sections were eroded along with the uppermost part of the Bowland-
Hodder unit (see Figure 24). 

Late Carboniferous uplift occurred in a number of phases across central Britain, associated with the 
Variscan orogeny. The areas of greatest uplift largely followed the axis of the earlier depocentres, so 
that, for example, the oldest basinal strata of the Bowland-Hodder unit are exhumed in the centre of 
the inversion axis in the Bowland Basin. 

3.4. Stratigraphy 

Historically, the Early Carboniferous organic-rich basin shales have been given many names (e.g. 
Bowland Shale, Hodder Mudstone, Worston Shales, Widmerpool Formation, Sabden Shale, Caton 
Shale, Long Eaton Formation, Edale Shales, Lask Edge Shales and Holywell Shales etc.), and all of 
these shale units are now encompassed within the Craven Group (Waters et al. 2009) (Figure 15). 

The interval mapped in this study is of Visean to early Namurian age, and has been interpreted on 
the seismic data in terms of sequence boundaries, and therefore includes both shales and laterally-
equivalent platform limestones (Figures 15 and 16). The non-prospective platform deposits were 
subsequently excluded from the model using estimated net shale mapping (see Section 3.7). 

In this study, this interval of interest is informally termed the ‘Bowland-Hodder unit’ (Figures 15 and 
16) since this is the key stratigraphic interval within the Bowland Basin that was targeted by the 
Preese Hall 1 well in western Lancashire (Figure 7), the UK’s first shale gas exploration well. 

The age of the Bowland-Hodder unit extends from the late Chadian to the Pendleian (and locally 
Arnsbergian), within the Visean and Namurian epochs. 

5 The term Bowland Basin is used in this report in preference to the synonym Craven Basin (Hudson 1933). It 
was formerly known as the Bowland Trough (e.g. Kent 1966). 
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THE CARBONIFEROUS BOWLAND SHALE GAS STUDY: GEOLOGY AND RESOURCE ESTIMATION 

Figure 15. Lithostratigraphical framework of the Bowland-Hodder unit in central Britain (after Waters et al. 2009). Note: away from the outcrops, the 
platform carbonates in the Wessenden 1 and Roddlesworth 1 boreholes are termed Holme High Group and Trawden Group respectively (Waters et al. 2011). 
No formal lithostratigraphic framework has yet been applied to strata in the subsurface Cleveland Basin. In pre-2009 terminology, the Craven Group equates 
to the combined Worston Shale and Bowland Shale groups, excluding the Clitheroe Limestone Formation. Note: the use of Upper Chadian follows Riley 
(1990), but the Chadian has been partly redefined by Waters et al. (2011). Also, the Cleveland Basin sequence is poorly known and it is likely to have non-
sequences that are not yet unrecognized. 

19 
© DECC 2013 



   

 
  

 

        
     

     
    

        
     

      
   

  

    
      

   
    

     
   

   
        

     
         

            
  

   
     
      
      

      
      

   

    
     

      
   

   
 

    

 

THE CARBONIFEROUS BOWLAND SHALE GAS STUDY: GEOLOGY AND RESOURCE ESTIMATION 

The base of the Bowland-Hodder unit is defined in the basins as the top of the ‘EC2/Chadian’ 
carbonates identified in the Widmerpool Trough (Fraser et al. 1990). Outside this half-graben, it has 
only been penetrated on the highs and platforms. In the Cleveland Basin, the Kirby Misperton 1 well 
terminated in a sandstone (termed the ‘Fell Sandstone’ on the company log), the top of which is 
taken to approximately equate to the base of the Bowland-Hodder unit. The overlying shales have 
been only imprecisely dated using palynology , but on regional sequence stratigraphical grounds it is 
likely that the top of the Fell Sandstone is overlain by Holkerian strata, with the equivalent boundary 
being the top of the Ashfell Sandstone (Stainmore Trough) and Twiston Sandstone in the Bowland 
Basin. 

The top of the Bowland-Hodder unit corresponds to the base of the sandstone-dominated Millstone 
Grit sequences. In outcrop, the Bowland Shale – Pendle Grit (oldest Millstone Grit unit) boundary is 
gradational and rather arbitrary, being part of an upward-coarsening sequence (Brandon et al. 
1998). It is taken at either the base of the first massive sandstone, or where the sandstones 
predominate over siltstones and mudstones. This transition is younger in the north, due to the 
progradation of deltaic sequences from the north and north-east. 

It should be noted that younger potential shale gas units, such as the Arnsbergian-Kinderscoutian 
Sabden Shale in Lancashire and much of the ‘Holywell shales’ in North Wales, which occur within 
Millstone Grit sandstone sequences, are excluded from this study (Figure 6). The Sabden Shale 
reaches a thickness of 1300 ft (400 m) in the Ribchester Syncline (Aitkenhead et al. 1992) and 2000 ft 
(610 m) south-east of Clitheroe (Earp et al. 1961), but it is not sufficiently deeply buried onshore to 
be considered as a source of shale gas. 

Older ‘limestone-with-shales’ of Courceyan age are also excluded from the Bowland-Hodder unit, 
and these represent the deposits of the initial phase of rifting within the basin. These include the 
Haw Bank Limestone-with-Shales (Hudson 1944, Arthurton et al. 1988), the Gisburn Cotes Beds 
(Earp et al. 1961) and 2156 ft (657 m) of undated muddy limestones in the Swinden 1 borehole 
(Charsley 1984). They may reach a thickness in excess of 10,000 ft (3000 m) based on geophysical 
modelling (Arthurton et al. 1988). This depocentre coincides with the location of the greatest uplift 
and inversion and where the Bowland High Group crops out in the core of the anticline. 

The integration of outcrop, well and seismic data has shown that the Bowland-Hodder unit can be 
divided into lower and upper parts (Figure 16). These correspond respectively to the EC3-EC6 syn-rift 
sequences and part of the LC1 post-rift sequence of Fraser et al. (1990). This subdivision provides a 
useful framework for the breakdown of the resource estimation into the less understood (and higher 
risk) lower unit and the better well-controlled (and lower risk) upper unit (see Section 5). It should 
be noted that although this division is valid as a generalized model, there is evidence that local syn-
depositional faulting continued into the Arnsbergian (e.g. Brandon et al. 1998 p.55). 
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Figure 16. Schematic diagram showing the relationship between hemipelagic basinal shales and 
platform carbonates within the Bowland-Hodder unit. Note that basin shales also occur interbedded 
with the sandstones of the overlying Millstone Grit. 

The lower part of the Bowland-Hodder unit comprises a thick, syn-rift, shale-dominated facies which 
passes laterally to age-equivalent limestones that were deposited over the adjacent highs and 
platforms (Figure 16). The presence of slumps, debris flows and gravity slides (Gawthorpe & 
Clemmey 1985, Riley 1990) are evidence for relatively steep slopes, which may have been the result 
of instability induced by tectonic activity. A combination of syn-depositional tectonics, fluctuating 
sea levels, climate change, and evolution of the carbonate ramps/platforms surrounding the basin 
resulted in a variety of sediments being fed into the basin at different times. Localised breccias are 
present close to the basin-bounding faults (Smith et al. 1985, Arthurton et al. 1988). This lower unit 
is dated as late Chadian to Brigantian in age. 

There is some evidence that marine transgressions, represented by high gamma, high TOC intervals, 
also occasionally flooded the platform highs (e.g. Arundian shales in the Plungar 8A well). However, 
there is so little well control for the lower unit in the deep basins, that it is unclear how regionally 
correlative these intervals are. 

The upper part of the Bowland-Hodder unit comprises basinal shales that were deposited both in 
the basins and across most of the platforms, following the drowning of the highs. These condensed 
zones are laterally continuous, rather than enclosed within basins, but are considerably thicker and 
richer in organic material within the basins which had a stratified water column. Within the Bowland 
Basin, individual beds can be easily correlated between (currently unreleased) wells, providing 
further evidence of relative stability in the upper unit. This unit is dated as latest Brigantian to 
Pendleian (locally up to Arnsbergian) in age. 

Evidence as to whether the onset of high-gamma shale deposition is always coincident with the 
Visean-Namurian boundary (Emstites leion Marine Band) requires further research. In most cases, 
there is a good correlation between these boundaries. However, in several wells, Brigantian ages 
have been assigned to the lowest part of the upper unit. 
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In the Harrogate outcrop (Cooper & Burgess 1993) and wells in the Cleveland Basin (this study), the 
boundary between the lower and upper parts of the Bowland-Hodder unit (and the top of the 
Visean) is taken near the base of the Harrogate Roadstone (of the Pendleton Formation). 

Biostratigraphic control will be particularly important in interpreting the depositional controls on 
shale gas prospectivity and obtaining a terminal core to constrain the maximum stratigraphical 
penetration is most desirable. Cores of shale over zones of interest can be used not only for gas 
desorption tests and analysis, but also to gain the high resolution stratigraphical knowledge and 
geophysical log/seismic calibration necessary to inform subsequent exploration and development 
(e.g. prediction of shale net to gross, lithological and diagenetic controls on shale characterisation, 
lateral distribution of most productive zones and identify faults and their displacement). 

3.5. Regional depth and isopach maps 

The top of the Bowland-Hodder unit lies at depths of up to 16,000 ft (4750 m) across the assessment 
area (Figure 17), with the greatest depth of burial occurring in the Bowland Basin of Lancashire, 
beneath the Permo-Triassic Cheshire Basin and in eastern Humberside. 

The thickness of the Bowland-Hodder unit (Figure 18) mirrors the regional Early Carboniferous 
structural configuration (Figure 14), with greatly expanded sections in the syn-rift basins. 

From outcrop data, the Bowland Basin is estimated to contain up to 880 ft (268 m) of Bowland Shale 
(Brandon et al. 1998) and 3000 ft (900 m) of Hodder Mudstone (Riley 1990). In the subsurface, 
seismic interpretation suggests the complete Bowland-Hodder unit reaches a thickness of up to 6300 
ft (1900 m) (Figure 18) in the same basin. This may be a conservative approximation, as Kirby et al. 
(2000) and Aitkenhead et al. (2002) estimated Tournaisian-Visean thicknesses of 13,000 ft (4000 m) 
and 8200 ft (2500 m) respectively (although both apparently include the Courceyan Chatburn 
Limestone Group and are thus not directly comparable to the Bowland-Hodder unit). The Thistleton 
1 well drilled 2911 ft (887 m) of the Bowland-Hodder unit, but terminated in Brigantian-aged shales 
and sandstones (N.J. Riley pers. comm.) and the lower part of the unit was not reached. 
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Figure 17. Depth (ft) to the top of the Bowland-Hodder unit, central Britain. The location of regional 
cross-sections is indicated (see Figure 19). 

Figure 18. Thickness (ft) of the Bowland-Hodder unit, central Britain. The interval was not mapped 
across the Derbyshire High where there are no seismic data (and the unit comprises platform 
carbonate rocks) (see Figure 19C & E). The location of example seismic profiles is indicated (see 
Figures 20-25). 
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The Bowland-Hodder unit is equally thick, or thicker, within the narrow, fault-bounded 
Gainsborough, Edale and Widmerpool basins (Figure 18) with up to 10,000 ft (3000 m), 11,500 ft 
(3500 m) and 9500 ft (2900 m) respectively. The Cleveland Basin maintains a more uniform 
thickness, with the distribution of net shale controlled by facies changes to the north and south. 
Kirky Misperton 1 drilled a complete Bowland-Hodder unit thickness of 4598 ft (1401 m). 

The organic-rich upper part of the Bowland-Hodder unit is typically up to c.500 ft (150 m) thick, but 
locally reaches 2900 ft (890 m). The syn-rift lower part of the Bowland-Hodder unit is considerably 
thicker, reaching 10,000 ft (3000 m) in the depocentres. 

A selection of seismic-based depth cross-sections (Figure 19) and example seismic profiles (Figures 
20-25) illustrate various aspects of the deep geology of the study area. Expanded captions provide 
additional information. 

Figure 19. Generalised depth cross-sections through the Bowland Basin, Cheshire Basin, Widmerpool 
Trough, Gainsborough Trough and Edale Basin. For location of the sections, see Figure 17. 
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Figure 20. Seismic example across the deepest-buried part of the Bowland Basin showing thickening 
of the Bowland-Hodder unit towards the basin depocentre. The Thistleton 1 well terminated in 
Brigantian-aged shales and sandstones and the lower Bowland-Hodder unit was not reached. 
However, the Hodder Mudstone Formation is at least 3000 ft (900 m) thick in the Plantation Farm 
Anticline outcrop section located 25 km ENE of Thistleton 1 (Riley 1990), and a section of similar 
thickness is expected to be present in the area overlain by Permo-Triassic strata. For location of the 
section, see Figure 18. 

Figure 21. Seismic example across a folded and uplifted part of the Bowland Basin. The Pendle Line 
and associated monocline mark the southern boundary of the Bowland Basin; Westphalian Coal 
Measures crop out in the south-east. For location of the section, see Figure 18. 
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Figure 22. Seismic example across the Edale Basin where very thick basinal shales are interpreted. On 
the adjacent Derbyshire High, the Bowland-Hodder unit comprises platform carbonates topped by 
relatively thin upper Bowland-Hodder shales. For location of the section, see Figure 18. 

Figure 23. Seismic example across the Gainsborough Trough. The Grove 3 well is located on the East 
Midlands Shelf and illustrates the platform limestone-dominated nature of the Bowland-Hodder unit 
that was deposited on an Early Carboniferous platform high area. For location of the section, see 
Figure 18. 
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Figure 24. Seismic example across the Widmerpool Trough, showing inversion of the basin 
depocentre and localised erosion of the upper part of the Bowland-Hodder unit beneath the base 
Permian unconformity. The Long Eaton 1 well penetrated 8028 ft (2447 m) of the Bowland-Hodder 
unit before reaching a limestone of possible Chadian age. For location of the section, see Figure 18. 

Figure 25. Seismic example across the Cleveland Basin, showing the presence of older wedging strata 
(of unknown age) beneath the Bowland-Hodder unit. The Kirby Misperton 1 well terminates in the 
‘Fell Sandstone’, but the older part of the Bowland-Hodder unit is also sand-prone in this well. For 
location of the section, see Figure 18. 
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3.6. Key wells 

Of the many wells drilled within the assessment area, only 64 reached sufficient depths to record 
more than 50 ft (15 m) of net shale in the Early Carboniferous section (Figures 7, 26 and 28, 
Appendix C). 

Few wells have penetrated the full Bowland-Hodder succession within the deep basins, but several 
have drilled sections of more than 5000 ft (1500 m). Detailed well correlations are included in 
Appendix D (Figure 26) and Figure 27 compares the sections encountered in some of the key wells 
and outcrops in the study. Note that most wells do not encounter the base of the unit, and only a 
few penetrate significantly into the lower Bowland-Hodder unit. 

In addition to wells drilled under hydrocarbon legislation, there are a number boreholes drilled for 
mineral and geothermal investigation which are relevant to the understanding of the Bowland-
Hodder shale play. For example, the BGS Duffield (Aitkenhead 1977) and Roosecote boreholes, the 
Cominco boreholes described by Arthurton et al. (1988), the BP minerals boreholes described by 
Aitkenhead et al. (1992) and Brandon et al. (1998) and the unpublished BGS Clitheroe geothermal 
borehole (SD 755 409). Note also, that many borehole samples, thin sections and macrofossil 
(ammonoids, bivalves) and microfossil (conodonts, foraminifera and palynology) preparations are 
held in the biostratigraphy/palaeontology collections at BGS. Contact enquiries@bgs.ac.uk for 
further details. 

Dating and correlation of the Bowland-Hodder unit requires a multidisciplinary approach. Standard 
industry techniques such as palynology are of limited use due to the poor preservation of miospores 
in the hemipelagic marine shales and the broad stratigraphic range of the miospore zones. The 
highest resolution stratigraphy is provided by glacio-eustatic flooding surfaces. These form the 
backbone for all the marine event stratigraphy and biostratigraphic correlation through the 
Bowland-Hodder unit, particularly in the upper part (Bowland Shales). Major flooding surfaces 
successively introduce new marine faunas, especially ammonoids (hence the need to take cores for 
definitive dating). Accessory taxa, such as hemipelagic bivalves, trilobites, foraminifera and 
conodonts, provide additional tools for correlation and understanding depositional environments, as 
well as elucidating the interplay between basinal facies and sediments sourced from surrounding 
areas (with implications on predicting shale quality and distribution). This knowledge is particularly 
important in deciphering the origin, cause and distribution of gravity-fed deposits within the 
hemipelagic sequence, and corresponding carbonate, silicate and organic-rich zones. 
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Figure 26. Location of well correlation lines included in Appendix D. 

Figure 27. Geophysical well-log correlation of the upper Bowland-Hodder unit between Rempstone 1, 
Old Dalby 1 and Kinoulton 1 located in the Widmerpool Gulf (see Appendix D iv for the complete 
correlation diagram). The upper part of the Bowland-Hodder unit contains correlateable units. 
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Figure 28. Craven Group basinal shale sections recorded from wells and outcrops, central Britain. At 
the Clitheroe and Plantation Farm anticlines, the outcrop section has been measured along the 
ground. In the wells, only the part drilled down from just above the top of the Bowland-Hodder unit is 
shown. See Figure 26 for the location of the wells and outcrop localities. The estimated thickness of 
the unit which remains undrilled below the terminal depth of each well is also indicated; this is based 
on seismic interpretation. Note the early incoming of clastic sediments in the northernmost well, 
Kirby Misperton 1. 
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3.7. Regional distribution of shale 

The mapping of the Bowland-Hodder interval as a seismically defined unit necessitated the use of a 
sequence stratigraphic approach. As a result, the mapped unit is constrained by time lines, between 
which there are a variety of basinal and platform facies. To ensure that the 3D volume model used to 
calculate the potential amount of gas in-place within the Bowland-Hodder unit only included shale 
lithologies (and not the platform limestones, nor sandstones and limestone turbidites within the 
basins), it was necessary to map the predicted lateral variation in shale percentage. The distribution 
of shale in the lower part of the Bowland-Hodder unit (Figure 29) was mapped using a shale analysis 
of key wells (using an appropriate gamma log cut-off) integrated into the regional palaeogeographic 
model (Figure 14). The distribution of shale in the upper part shows little variation across the study 
area. 

Figure 29. Predicted shale percentages within the lower part of the Bowland-Hodder seismic unit 
used to condition the 3D volume during the calculation of in-place gas resources. 

3.8. Geochemical evaluation 

Many central Britain outcrop, core and cuttings samples of Visean and Namurian shales have 
undergone geochemical analysis, mainly when studying source rocks in conventional petroleum 
systems. Relatively little analysis has specifically targeted its shale gas plays. 

Data from 161 well and outcrop locations (3420 samples) were available to this study. Many reports 
are available through the general release of hydrocarbon well data from DECC’s data release agents. 
Data has also been extracted from Petra-Chem (1983a, b, c) and RRI (1987). Rock-Eval analysis of an 
additional 109 core samples was commissioned as part of this study (Appendix B). Confidential data 
available to DECC was integrated into the study, but it is not published in this report. Under UK 
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onshore licence terms, well data is held confidential for four or five years before it can be released 
into the public domain by DECC’s release agents. 

Geochemical data were also available from strata higher in the Carboniferous succession, and these 
have proved useful in determining maturation trends with depth and burial history. 

Organic carbon content 
There are only limited published data on organic carbon contents in the Bowland-Hodder unit (DECC 
2010a, Smith et al. 2010). These published data suggest that Namurian marine shales have generally 
higher TOC values (average 4.5%) compared to non-marine shales, which have an average value of 
2.7% (Spears & Amin 1981). Maynard et al. (1991) found that two thin Namurian black shale marine 
bands have a TOC of between 10 and 13%, whereas values within interbedded strata ranged 
between 2 and 3%. The Namurian Holywell Shale of North Wales has TOC values in the range 0.7-5%, 
with an average of 2.1% (Armstrong et al. 1997). More recently, the Ince Marshes 1 well 
encountered shales with TOC values of 1.18 – 6.93% (average 2.73%) in the ‘Bowland Shale’ (iGas 
2012). Könitzer et al. (2011) record Arnsbergian shales with 1-7% TOC in the Carsington C4 borehole 
[SK 251 530]. 

Figure 30. Summary of total organic carbon analyses from the Bowland-Hodder unit in central 
Britain. There are seven data points with TOC >8%. Some data may be from adjacent horizons and 
some non-shale lithologies are included. 

A review of all available total organic carbon data from the Bowland-Hodder unit in central Britain is 
summarised in Figure 30. Most samples are from the upper part of the Bowland-Hodder unit. Values 
fall in the range >0.2 to 8%, with most shale samples in the range 1-3% TOC. Smith et al. (2010) give 
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a similar range up to 10%. The results of the new Rock-Eval analyses commissioned as part of this 
study (shown in red on Figure 30 and listed in full in Appendix B) mirror this conclusion. 

For comparison, USEIA (2011a) quote an ‘average TOC’ for the Bowland shale play of 5.8%. 

The down-hole gamma-log response is generally considered to be a good proxy for organic carbon 
content where geochemical analyses are lacking. TOCs in excess of 1-3% typically correlate with 
gamma log values of greater than 150 API. 

The gamma-log responses of the shales within the upper Bowland-Hodder unit indicate significant 
intervals having >2% TOC (see well correlations in Appendix D). 

While there are some data for the lower Bowland-Hodder unit, the well penetrations are mostly 
within the uppermost 100 feet, so few wells sample the full expanded section in the narrow rifted 
basins. The exceptions indicate consistently high TOC values in the Widmerpool Gulf, with average 
TOCs of 3.5%, 4.9% and 5% over sampled intervals in Old Dalby 1, Ratcliffe-on-Soar 1 and Rempstone 
1 respectively (Appendix B). There are no analysed samples from the lower unit in the Gainsborough 
Trough. 

The observed range of TOC values in the Bowland-Hodder unit (average 1-3%, maximum 8%) is 
comparable to many of the producing North American shale-gas analogues (Table 3). 

Formation Age HIo (mg/g) TOCpd 

Low (wt. %) 
TOCpd 

High (wt. %) 
TOCpd 

Average (wt. %) 

Barnett Early Carboniferous 434 0.02 9.94 3.74 
Fayetteville Early Carboniferous 404 0.71 7.13 3.77 
Woodford Devonian 503 0.26 11.27 5.34 
Bossier Late Jurassic 419 0.46 4.11 1.64 
Haynesville Late Jurassic 722 0.23 6.69 3.01 
Marcellus Devonian 507 0.41 9.58 4.67 
Muskwa Devonian 532 0.01 5.97 2.16 
Montney Triassic 354 0.01 4.78 1.95 
Utica Ordovician 379 0.19 3.06 1.33 
Eagle Ford Late Cretaceous 411 0.58 5.6 2.76 

Table 3. Comparison of present-day total organic carbon contents (TOCpd) for the top 10 shale gas 
plays in North America (Jarvie 2012). 

Kerogen type 
Four basic categories of kerogen are recognised in organic matter (Tissot et al. 1974). Type I and II 
kerogens have the potential to generate both oil and gas. Type III kerogens mainly generate gas, 
with only a small amount of oil, while Type IV kerogens have little or no remaining potential to 
generate hydrocarbons. 

The type of kerogen present is also an indication of the environment in which the interval was 
deposited. Algae seen in Type I samples indicate a lacustrine (or marine environment), whereas Type 
II is deposited exclusively in marine conditions and contains plant spores, exines, resins and 
bacterially degraded algal matter. During initial maturation, Type II source rocks generate mainly oil 
and only a limited amount of gas. As maturation proceeds through higher temperatures, secondary 
cracking in these source rocks cracks the generated oil into gas. Type III organic material is 
comprised of vitrinite and is typically woody material found in continental rocks deposited in rivers 
and deltas, but it can also be found in marine environments where it is washed in from a nearby 
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shelf. Type IV contains inertinite, where oxidation of woody material has occurred, either before it is 
deposited or in situ. 

Ewbank et al. (1993) reported Type II kerogen in the Widmerpool Gulf, Edale Basin, Goyt Trough and 
mudstones interbedded with carbonates on the Derbyshire High; Type III was also present. However, 
little additional data are available to establish the original composition of the kerogen in the 
Bowland-Hodder unit. The identification of kerogen type using geochemical cross-plots is 
complicated by the fact that various ratios can reduce during the maturation process (Jarvie et al. 
2005, 2008). A significant number (but still a minority) of samples plot in the Type II field (Figure 31; 
Appendix B) which is in general agreement with the deep-water marine, hemipelagic depositional 
environment of the Bowland-Hodder unit. One explanation as to why many samples plot as Type III 
is that their geochemistry has been altered during maturation. 

Figure 31. Remaining hydrocarbon potential (S2) versus TOC plot for (a) the Barnett Shale (from 
Jarvie 2008) and (b) all available data from this study. There are close similarities, although the larger 
range of TOCs in the Barnett Shale is evident. 
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Further data relevant to kerogen typing and maturation are shown in Figures 32 and 33. 

Figure 32. Modified van Krevelen diagram (HI versus OI plot) for all available data from this study. A 
significant number of samples fall in the Type II field. 

Figure 33. Hydrogen Index versus Tmax plot for all available data from this study. 
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Thermal maturity and uplift 

Figure 34. Relationship between temperature, vitrinite reflectance of organic material and phases of 
hydrocarbon generation (modified from Tissot et al. 1974 and McCarthy et al. 2011). 

The thermal generation of oil and gas from organic material (Figure 34) generally takes place at 
temperatures between 50°C and 225°C. At lower temperatures, the organic material is immature 
and no oil or gas will be thermally generated from the source rock; at much higher temperatures, 
the organic material is overmature and all possible oil and gas will have been generated. The timing 
of generation is dependent on the kerogen type and the exact composition of the organic material. 

Vitrinite reflectance (Ro) and measurements of the temperature of maximum release of S2 
hydrocarbons (Tmax) at outcrop and in boreholes provide a widely accepted proxy for thermal 
maturity and extent of hydrocarbon generation. An equivalent to Ro can be calculated from Tmax 

using the following formula (Jarvie et al. 2001): 

Tmaxeq%Ro = 0.018(Tmax) – 7.16 [where Tmax is in °C] 

From an analysis of all available maturity data of the Bowland-Hodder unit in the study area, it can 
be deduced that an Ro of 1.1% (equating to the onset of significant gas production) can be reached 
at a present-day depth of anything between outcrop and 9500 ft (2900 m) (Figure 35). This 
variability occurs because the simple Ro vs. depth relationship is overprinted by the multiphase 
subsidence and inversion experienced across the study area. 
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Figure 35. Chart showing all available vitrinite reflectance data (Ro and equivalent data calculated 
from Tmax) plotted against present-day sub-sea depth for the Bowland-Hodder unit (and some 
younger strata) across central Britain. The curve shows a conservative best-fit baseline (i.e. a minimal 
uplift baseline); data points lying well above the baseline are affected by the highest amounts of 
uplift. 

In the absence of quantitative data on uplift, the data summarised in Figure 35 have been used to 
set a baseline with minimal uplift to subsequently obtain a best-guess estimate of uplift at well 
locations. Data points lying above the baseline are primarily affected by uplift, so by adjusting the 
best-fit baseline curve to fit the data for a given well, the depth at which this curve intersects Ro = 
1.1% can be identified (Figure 36). 

Figure 36. Chart showing the vitrinite reflectance data from Widmerpool 1. The baseline from Figure 
35 has been adjusted upwards to fit the spread of the data. The depth at which Ro is expected to 
reach 1.1% is 8600 ft, i.e. the top of the gas window lies at c.8600 ft at this well location. 
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This approach is qualitative and should be treated with considerable caution, but it achieves some 
credence in its broad geographical conformance to other uplift models (e.g. Fraser et al. 1990, Kirby 
et al. 2000). At least two phases of uplift have been recognised: the first during the latest 
Carboniferous and early Permian (Variscan uplift) and the second during the Tertiary (Alpine uplift). 

Appendix E contains details of a 1D and 2D basin modelling study, which includes uplift curves for 
wells and maturity models for 2D profiles. An example from the Kirk Smeaton 1 well is shown as 
Figure 37. 

Figure 37. 1-D basin model for the Kirk Smeaton 1 well taken from Appendix E. (top) shows the 
depositional history, (centre) shows the modelled palaeo-heat flow and (bottom) shows the modelled 
vitrinite reflectance (VR) maturity curve and raw VR data. 
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This procedure was carried out for all well and outcrop data and the resulting depths contoured to 
derive a depth surface to the top of the gas window throughout the study area (Figure 37). 

Figure 38. Estimated present-day depth (feet) to the top of the gas window (Ro = 1.1%), central 
Britain. Note: the shallowest colour includes areas where this isomaturity surface is above sea-level 
and also above the land surface. 
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3.9. Calculating gas-mature shale volumes 

The work flow used to estimate the in-place gas resource in this study is shown in Figure 39. This 
shows the processes (large arrow) as well as the data sources (in blue). Some data was not available 
from the study area, so data from US analogies was used. There is a significant range of uncertainty 
of the shale volume, and greater uncertainty in the range of free and adsorbed gas used to calculate 
the total in-place gas volume. No attempt was made to estimate the potential liquid resource, for 
which the thermal maturity criteria would result in a different gross rock volume. 

Figure 39. Workflow used in this study to estimate the in-place shale gas resource. 

The calculation of the net gas-mature shale volume in the study area used the following basic 
screening criteria: 

Identification of potentially prospective shale gas units from well information 

• Mapping the top and base of units to enter into a 3D model 
• Mapping the shale component as a proportion of the seismically mapped unit 
• Minimum depth cut-off of 5000 ft (1500 m) below land surface 
• Minimum cut-off where Ro > 1.1% (max cutoff of Ro > 3.5% never exceeded) 

The volumes of shale in the upper and lower parts of the Bowland-Hodder unit were calculated using 
the following formula: 

Net shale volume (m3) = gross rock volume¹ (m3) x proportion of shale 

¹ below the depth where Ro = 1.1% or 5000 ft, whichever is the deeper. 

The thermal maturity surface (Figure 38) was integrated with the depth structure mapping and shale 
proportion distribution (Figure 29) to calculate the volume of Bowland-Hodder shale in the gas 
window. Areas where the Bowland-Hodder shale is less than 5000 ft (1500 m) below the land 
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surface were removed from the potentially prospective volume. North American experience has 
shown that there is not adequate pressure to economically produce shale gas at shallow depths 
(with the exception of the biogenic gas in the Antrim Basin in Michigan). 

Figure 40. Thickness and distribution of shales of the lower Bowland-Hodder unit that are within the 
gas window and at a depth greater than 5000 ft. 

Figure 41. Thickness and distribution of shales of the upper Bowland-Hodder unit that are within the 
gas window and at a depth greater than 5000 ft. 
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Figure 42. Schematic geological cross-sections indicating where the Bowland-Hodder unit might be considered a shale gas target (labelled ‘Gas’ in the key). Liquids potential, 
where not thermally mature for gas (labelled “Oil”), are not considered within the scope of this study. For location of the section, see Figure 40 or 41. 
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This interpretation is consistent with the detailed core analysis from wells (see Appendix B). In Old 
Dalby 1 in the Widmerpool Trough, high organic contents and high hydrogen indices (interpreted as 
Type II kerogen) are encountered, but the calculated Ro values of 0.6-0.7% at 4239-4450 ft sub-sea 
indicate that the lower Bowland-Hodder shales are immature for gas generation (Figure 40). 

In Blacon East 1, in the Blacon Basin, the calculated Ro values of 1.0-1.1% at 6075-6100 ft sub-sea 
and 1.6-1.9% at 7423-7433 ft indicate that the upper shales are at the lower limit of the gas window, 
whilst the lower unit is within the gas window (Figures 40 and 41). In Grove 3, located on the East 
Midlands Shelf, a shale within the lower unit carbonates is also within the gas window (calculated Ro 

values of 1.8% at 7354-7384 ft sub-sea) (Figure 40). 

The resultant maps and cross-sections show the areal extent of the upper and lower shale gas plays 
together with the estimated thickness of gas-mature shale (Figures 40-42). There are indications that 
there is a significant volume of gas-mature Bowland-Hodder shale in the Bowland, Cleveland, Edale 
and Blacon basins and the Gainsborough Trough. The shales in the Widmerpool Trough and 
Nottingham Shelf are not mature for gas, but contain a significant volume of shale that is thermally 
within the oil window, where liquids may be prospective, but this is outside the scope of this study. 

While liquids associated with shale gas are highly sought after in North America, the recovery of 
liquids is lower yield than gas and therefore with the current high gas price in Europe it is anticipated 
that shale gas will be more commercially viable than producing liquids. However, the economics of 
both plays need more study once the results of wells are available. 

Figure 43 shows that there is extant acreage which falls into the highly prospective areas for shale 
gas, so shale gas drilling and testing does need not wait upon the award of new licences. An update 
to DECC’s 2010 Strategic Environmental Assessment is currently being undertaken and a full 
consultation is planned to form the basis for the next onshore licensing round. 

Some of the most prospective areas are in environmentally sensitive areas or under urban centres. 
Exploration and potential development will likely progress at a much slower pace to fully consider 
how adverse impacts can be mitigated and to obtain surface landowner access permissions (both for 
well sites and under the path of all deviated wells), but shale gas development of the Barnett Shale 
in the densely populated Dallas-Fort Worth Basin proves that it is not impossible. 
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Figure 43. Summary of areas prospective for gas in the upper and lower parts Bowland-Hodder unit 
in central Britain with currently licensed acreage shown. 

Figure 44. Summary of areas prospective for gas in the upper and lower parts Bowland-Hodder unit 
in relation to the urban areas of central Britain. Contains Ordnance Survey data © Crown copyright 
and database right 2013. 
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4. Resource estimation 

In 2010, a DECC-commissioned BGS study estimated that, by a simple scaled basin-size analogy with 
similar producing shale gas plays in North America, that the UK Carboniferous Upper Bowland Shale 
(i.e. upper Bowland-Hodder unit) gas play, if analogous to the Barnett Shale of Texas, could 
potentially yield up to 4.7 tcf of gas or if analogous to the Antrim Shale, 2.1 tcf (DECC 2010a, BGS 
2012). 

Now, based on this detailed work undertaken in 2012-13, a rigorous gas-in-place resource 
estimation can be made for the Bowland-Hodder unit in central Britain. The details of this study’s 
calculation and its results are presented in Appendix A. 

This study concludes that the stacked Bowland-Hodder unit can be separated into two genetically 
defined intervals, with different probabilities of success, largely due to the limited well penetrations 
of the deeper interval. The upper unit is well constrained with borehole penetrations, core analyses 
and moderate seismic control. It is a condensed interval characterised by high organic content, with 
evidence of gas in boreholes and high gamma ray signature in well logs which can be correlated over 
a large area, even flooding over the carbonate platforms at the basin margins. There are a number of 
intervals greater than 200 ft thick that could potentially be developed using horizontal drilling 
technology. The estimated range of Gas in Place (GIIP) for the upper Bowland-Hodder unit is 
164 – 264 – 447 tcf. 

Figure 45. Probabilistic distribution and cumulative probability curve representing the result of a 
Monte Carlo analysis for the in-place resource estimation of shale gas in the upper Bowland-Hodder 
unit. 

The lower unit’s expanded sequence must be viewed as a higher risk resource as it is much less 
explored – there are few well penetrations and it is poorly imaged on seismic data in the deepest, 
potentially most prospective basins (Widmerpool Gulf, Edale Basin and Gainsborough Trough), 
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where thicknesses can reach 10,000 ft. The few deep well penetrations do show some high organic 
content, high gamma log prospective intervals that may prove to be laterally contiguous. The 
presence of large-scale slumps in the lower unit may also present challenges for shale gas 
exploration and production. In addition, the lower unit thickness, complex syn-rift structure and 
stratigraphy do not have any producing analogies in North America. Consequently, the estimated 
range of gas in-place for this thick sequence is 658 – 1065 – 1834 tcf, with a lower assumption of gas 
yield than the upper unit. 

Figure 46. Probabilistic distribution and cumulative probability curve representing the result of a 
Monte Carlo analysis for the in-place resource estimation of shale gas in the lower Bowland-Hodder 
unit. 

The total range of estimated gas-in-place for the combined upper and lower units is 822 – 1329 – 
2281 tcf. No estimate is made for the potential for liquid hydrocarbons, which is outside the scope of 
this study. 

Total gas in-place estimates (tcf) Total gas in-place estimates (tcm) 
Low (P90) Central 

(P50) 
High (P10) Low (P90) Central 

(P50) 
High (P10) 

Upper unit 164 264 447 4.6 7.5 12.7 
Lower unit 658 1065 1834 18.6 30.2 51.9 
Total 822 1329 2281 23.3 37.6 64.6 

This estimate is a gas in-place (GIP) estimate, because a reliable estimate of recoverable shale gas 
cannot be made at this time (see Section 2.2). DECC does not include any onshore or offshore shale 
gas potential in the published estimates for Undiscovered Resources , where detailed mapping has 
identified undrilled prospectivity in basins where the uncertainties in evaluating prospectivity are 
much better understood. 
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It must be noted that this Bowland Shale gas in-place (GIP) estimate is very large when compared 
with the total ultimate recovery of gas (i.e. gas reserves plus cumulative production) from the 
offshore UK, which is currently estimated at 92.7 - 101.4 - 109.0 tcf. Of this total, the cumulative 
amount of gas produced to the end of 2011 was 84.0 tcf. (See 
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/16096/6313-
appendix-1-reserves-2012l.pdf) 

However, only with further shale gas exploration drilling and testing over an extended period, and 
optimization of the extraction process, will it be possible to determine whether this identified shale 
gas prospectivity can be exploited commercially – and how significant a contribution it could make 
to the future UK energy mix. 
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5. Glossary 

Unit/abbreviation Full name 

API standard (American Petroleum Institute) measure of natural gamma radiation
typically in a borehole 

bcf billion (109) cubic feet 
Bg gas expansion factor 
ft foot/feet 
ft³ or scf (standard) cubic foot/feet 
GIIP gas initially in place 
HIo original hydrogen index 
HIpd present-day hydrogen index 
km kilometre(s) 
km2 square kilometre(s) 
m metre(s) (1 m = 3.28084 ft) 
m³ cubic metre(s) (1 m³ = 35.31467 ft³) 
Ma million years before present 
mD millidarcy 
MPa megapascal(s) (1 MPa = 145 psi) 
mmcfd million (106) cubic feet of gas per day 
mile²m a volume occupying an area of 1 square mile with a thickness of 1 metre 

(1 mile²m = 2,589,988 m³) 
Ro vitrinite reflectance (in oil) (%) 
tcf trillion (1012) cubic feet 
tcm trillion (1012) cubic metres 
TOC total organic carbon (%) 

Note (1) As the Global Stratotype for the base Pennsylvanian contains numerous non-sequences 
(Barnett & Wright 2008), precise correlation is not possible. 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

Appendix A: Estimation of the total in-place gas resource in the 
Bowland-Hodder shales, central Britain 

Aim 

The aim of this study is to estimate the P10-P50-P901 range of total gas-in-place volumes for the 
upper and lower Bowland-Hodder (Early Carboniferous) shale units across the Pennine Basin of 
central Britain. 

This analysis forms the appendix to the main Bowland-Hodder report, which provides the detailed 
geological background to this shale gas play. This specific study applies a Monte Carlo simulation to a 
suite of input parameters, some of which come from the geology-based methodology described in 
the main report, and others which are based on information from published analogues. 

Introduction 

The total gas content of a shale is made up of two main components: 

Free gas – the gas contained in pore spaces; this volume is very pressure dependent, and pressure is 
related to depth (assuming no overpressure). 

Adsorbed gas – the gas which is adsorbed in the organic matter in the shale. The quantity of gas 
adsorbed is dependent on the quantity, type and distribution of the organic content within the 
shale, it is largely pressure independent. 

In the USA shale gas plays, the ratio of adsorbed gas to free gas varies from 60:40 to 10:90 (Jarvie 
2012). 

Equations2 

Free gas at standard conditions is calculated using the equation: 

GIIPf =  A * h * φ * Bg 
Where A  = area 

h  = thickness 
φ  = gas-filled porosity 
Bg = gas expansion factor (depth dependant) 

1 P10, P50 and P90 correspond to the 10%, 50% or 90% probability of more than that amount being present. In 
the case of P10, there is a 10% probability that the actual result will be higher, or a 90% chance the result will 
be lower. 
2 In this project, metric units have been used throughout the calculation stages, with the conversion to 
imperial units only given for the presentation of the output (Table 3b and Figures 1 and 2). 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

Adsorbed gas is calculated using the equation: 

GIIPa = A * h * ρ * G 
Where A  = area 

h  = thickness 
ρ = rock density 
G = adsorbed gas content of shale (volume of gas/weight of shale) 

Where experimental analysis of core samples is available, the Langmuir equation is used to calculate 
G: 

G = Gl * P 
Pl + P 

Where Gl = Langmuir volume [volume of adsorbed gas at infinite pressure] 
Pl = Langmuir pressure [pressure where one-half of the gas at infinite pressure has 

been desorbed] 
P = Reservoir pressure 

Total gas in place (GIIP) (at standard conditions) = Free gas (GIIP f) + Adsorbed gas (GIIPa) 

Values used 

Free gas 
The controlling factors for free gas are area, thickness, gas-filled porosity and depth (and 
overpressure, if present). Those factors that are estimated in this study are shown in bold; those that 
rely on analogues are shown in italics. 

Rather than inputting parameters for area and thickness separately, a figure for net shale volume 
has been used. This is the volume of organic-rich shale (TOC>2%) which is considered mature for gas 
generation (Ro>1.1). The explanation of how this volume was derived can be found in Section 3.9 of 
the main report. Error bars of ± 15% have been used to take into account uncertainties in the seismic 
mapping. 

Specific information on the gas-filled porosities of UK shales is not available. Reported gas-filled 
porosities for US gas shales are in the range 1-5% (Curtis 2002) and 2.9-6% (Jarvie 2012) (Table 1). 
Lewis et al. (2004) quotes a figure of 4-6% porosity for gas shales. For an undeveloped play in the 
Netherlands, TNO (2009) used the Curtis (2002) figures of 1-5% gas-filled porosity. These 
conservative figures are used in this analysis: a log-normal distribution with a mean of 3% porosity 
with a two standard-deviation variation and cut-offs at 0.5% and 10%. 

The gas expansion factor (Bg) converts the volume of free gas under reservoir conditions into a 
volume under atmospheric conditions using the formula: 

Bg = depth (m) /10.7 

It is not known whether the UK shales are overpressured, and hydrostatic pressure has been 
assumed.  Any overpressure would increase the quantity of free gas stored in the pore spaces. Shale 
gas accumulations in the USA are commonly overpressured. 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

Adsorbed gas 
The controlling factors are area, thickness, shale density and adsorbed gas content of shale. Those 
factors that are estimated in this study are shown in bold; those that rely on analogues are shown in 
italics. 

Langmuir volumes can be obtained experimentally from core samples, but none have been 
published for shales in the UK. Published values of adsorbed gas contents of shales in the USA are as 
follows: 

Source Basin/area Gas-filled 
porosity 

(%) 

Total gas 
content 

(scf/ton) 

Adsorbed 
gas (%) 

Adsorbed 
gas content 

(scf/ton) 

Adsorbed 
gas content 

(m3/ton) 
Curtis (2002) Antrim 4 40 - 100 70 28 - 70 0.8 - 2.0 
Curtis (2002) Ohio 2 60 - 100 50 30 - 50 0.8 - 1.4 
Curtis (2002) New Albany 5 40 - 80 40 - 60 16 - 32 0.5 - 0.9 
Curtis (2002) Barnett 2.5 300 - 350 20 60 - 70 1.7 - 2.0 
Curtis (2002) Lewis 1 - 3.5 15 - 45 60 - 85 9 - 27 0.3 - 0.8 
Jarvie (2012) Marcellus 4 60 - 150 45 27 - 67.5 0.8 - 1.9 
Jarvie (2012) Haynesville 6 100 - 330 25 25 - 82.5 0.7 - 2.3 
Jarvie (2012) Bossier 4 50 - 150 55 27.5 - 82.5 0.8 - 2.3 
Jarvie (2012) Barnett 5 300 - 350 55 165 - 192.5 4.7 - 5.5 
Jarvie (2012) Fayetteville 4.5 60 - 220 50 - 70 30 - 110 0.8 - 3.1 
Jarvie (2012) Muskwa 4 90 - 110 20 18 - 22 0.5 - 0.6 
Jarvie (2012) Woodford 3 200 - 300 60 120 - 180 3.4 - 5.1 
Jarvie (2012) Eagle Ford 4.5 200 - 220 25 50 - 55 1.4 - 1.6 
Jarvie (2012) Utica 2.9 70 60 42 1.2 
Jarvie (2012) Montney 3.5 300 10 30 0.8 

Table 1. Summary of parameters for various shales in the USA that are relevant to gas resource 
calculations in this study (from Curtis 2002, Jarvie 2012). 

For the modelling undertaken in this report, a fairly conservative range of adsorbed gas contents of 
0.5 to 2.0 m3/ton (18-71 scf/ton) has been taken. There is a linear relationship between gas contents 
and TOC values, and the use of a lower gas content value relative to the US examples (which tend to 
have a slightly higher TOC) is reasonable. See Section 3.8 of the main report for a discussion on UK 
TOC values. 

Published shale densities are in the range 2.4-2.8 g/cm³. This study has used 2.55 – 2.6 – 2.65 g/cm³ 
as a range of values for calcareous shale. This is supported by downhole geophysical well logs in the 
study area. 
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Monte Carlo input parameters 

For free gas-in-place (GIIPf) 
Net mature shale volume (m³) Median depth (m) Gas-filled porosity (%) 

cut-off ml cut-off min ml max cut-off mean cut-off 
Upper unit 7.90E+11 9.31E+11 1.15E+12 1800 2100 2400 0.5 3 10 
Lower unit 2.90E+12 3.45E+12 3.97E+12 2100 2400 2700 0.5 3 10 

For adsorbed gas-in-place (GIIPa) 
Net mature shale volume (m³) Density (g/cm³) Adsorbed gas content (m³/t) 

cut-off ml cut-off min ml max min max 
Upper unit 7.90E+11 9.31E+11 1.15E+12 2.55 2.6 2.65 0.5 2 
Lower unit 2.90E+12 3.45E+12 3.97E+12 2.55 2.6 2.65 0.5 2 

Table 2. Input parameters for the Monte Carlo simulation used to determine the total gas content 
and total gas in place in the upper and lower parts of the Bowland-Hodder unit, central Britain. 

Monte Carlo results 

(a) Metric Total gas content estimates (m³/m³) Total gas in-place estimates (tcm) 

Low (P90) Central 
(P50) 

High (P10) Low (P90) Central (P50) High (P10) 

Upper unit 3.9 7.9 14.8 4.6 7.5 12.7 
Lower unit 4.2 8.7 16.3 18.6 30.2 51.9 

(b) Imperial Total gas content estimates 
(bcf/mile²m) 

Total gas in-place estimates (tcf) 

Low (P90) Central 
(P50) 

High (P10) Low (P90) Central (P50) High (P10) 

Upper unit 0.36 0.73 1.35 164 264 447 
Lower unit 0.39 0.79 1.49 658 1065 1834 

Table 3. Results of a Monte Carlo simulation (500,000 iterations) to determine the total gas content 
and total in-place gas resource in the upper and lower parts of the Bowland-Hodder unit, central 
Britain. The results are given in (a) metric and (b) imperial units. 

Note that USEIA (2001a) used a figure of 48 bcf/mile² with a thickness of 148 ft (45.1 m), which gives 
an equivalent value of 1.06 bcf/mile²m. 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

Figure 1. Probabilistic distribution and cumulative probability curve representing the result of a 
Monte Carlo analysis for the in-place resource estimation of shale gas in the upper Bowland-Hodder 
unit. 

Figure 2. Probabilistic distribution and cumulative probability curve representing the result of a 
Monte Carlo analysis for the in-place resource estimation of shale gas in the lower Bowland-Hodder 
unit. 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

Key variables and their effect on the estimated gas volume 

Variable Uncertainty 

Gross rock volume/3D 
geological model 

The 2D seismic data interpreted in the study area is of variable quality, 
and is generally poor to moderate. A two-standard-deviation variation 
has been used on the gross rock volume, but it could be greater, 
resulting in a wider range of estimated gas volumes. 

Definition of prospective 
shale 

The definition of net prospective shale used in this report could be 
optimistic; it includes a wide variety of shales and not just those with the 
highest gamma-log response (and hence highest TOC). This definition is 
influenced by the fact that the most suitable shales for current 
extraction techniques are not necessarily those with the highest TOC. 
Any approach which is more pessimistic would have the greatest effect 
on the lower Bowland-Hodder unit volumes. 

Definition of gas maturity The use of Ro > 1.1% as the top of the gas window is possibly optimistic. 
It could be 1.4% which would reduce the estimated gas volume. 

Shallow depth cut-off The use of 5000 ft is based on USGS global screening criteria. If this were 
deeper, this would reduce the estimated gas volume. 

Gas-filled porosity of the 
shale 

The use of a mean of 3% is a conservative estimate. It could be greater, 
which would increase the estimated gas volume. The large range of 
values has a significant effect on the calculated in-place gas figure (see 
Figures 3 & 4). 

Reservoir pressure The assumption that the shales are at hydrostatic pressure is 
conservative. Any amount of overpressure would increase the estimated 
gas volume. 

Adsorbed gas content The use of 0.5-2.0 m³/ton is lower than some US analogues. Any 
increase in this range of values would increase the estimated gas 
volume. 

Bulk density The average density of 2.6 g/cm³ is a robust estimate. If the density is 
higher this will increase the estimated gas volume (and vice versa). 
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Figure 3. Tornado diagram representing the result of a Monte Carlo analysis for the in-place resource 
estimation of shale gas in the lower Bowland-Hodder unit. 

Figure 4. Tornado diagram representing the result of a Monte Carlo analysis for the in-place resource 
estimation of shale gas in the lower Bowland-Hodder unit. 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

Conclusion 

This study estimates that the total in-place gas resource for the Bowland-Hodder (Carboniferous) 
shales across northern England is 822 – 1329 – 2281 tcf (23.3 – 37.6 – 64.6 tcm) (P90 – P50 – P10). It 
should be emphasised that this figure is an in-place resource estimate. The amount that could be 
recovered depends on factors outwith the scope of this report, and could very likely be a small 
percentage. 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

Appendix B: Rock-Eval geochemical analysis of 109 samples from the 
Carboniferous of the Pennine Basin, including the Bowland-Hodder 
unit 

Introduction 

One hundred and nine core samples were collected from 16 selected wells within the Carboniferous 
Pennine Basin of central Britain (Figure 1, Table 1) and analysed using the BGS Rock-Eval machine. 
The spreadsheet of data derived from the Rock-Eval analysis (Appendix 1) records depths and the 
main parameters measured - S1 (free hydrocarbons), S2 (bound hydrocarbons), Tmax (the temperature 
at which S2 peaked), S3 (carbon dioxide) and the total organic carbon (TOC). 

Figure 1. Map of central Britain showing the Early Carboniferous basins and the locations of the 16 
sampled wells. 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

Well name top 
sample 

(ft) 

bottom 
sample (ft) 

Chronostratigraphy Lithostratigraphy Unit (this report) 

Black Hill 218.2 246.1 Namurian (Marsdenian?) Millstone Grit Millstone Grit 
Blacon East 1 6122.0 6147.6 Visean (Brigantian) Bowland Shale Fm Upper BHU 

7423.0 7432.6 Visean (?Asbian) Clwyd Limestone Group ?shelf limestone 
Bosley 1 6568.9 6582.7 Chadian Lower BHU? 
Brigg 1 6328.4 6336.9 Visean Carboniferous limestone shelf limestone 
Clitheroe 403.2 761.8 Visean Hodder Mudstone Lower BHU 
Grove 3 7564.6 7594.0 Visean (Chadian) Carboniferous limestone shelf limestone 
Heywood 1 5249.2 5260.2 Visean (Asbian-Brigantian) Carboniferous limestone shelf limestone 
High Ings Barn 313.3 719.5 Visean Carboniferous limestone shelf limestone 
Long Eaton 1 5871.0 5901.0 Visean (Arundian-Holkerian) Long Eaton Fm Lower BHU 
Nooks Farm 1A 1401.0 1531.0 Visean (Asbian-Brigantian) Onecote Sandstone Lower BHU 
Old Dalby 1 4562.3 4773.6 Visean (Asbian-Brigantian) Widmerpool Fm Lower BHU 
Ratcliffe-on-Soar 1 891.4 949.8 Namurian (Arnsbergian) Rempstone Fm Millstone Grit 
Rempstone 1 2181.8 2191.6 Namurian (Arnsbergian) Upper Bowland Shale Upper BHU 
Roddlesworth 1 4226.0 4281.0 Visean (Asbian-Brigantian) Carboniferous limestone shelf limestone 
Swinden 1 98.4 2065.3 Tournasian (Courceyan) Carboniferous limestone shelf limestone 
Wessenden 1 3505.0 3513.0 Tournasian (Courceyan) Carboniferous limestone shelf limestone 

Table 1. Wells analysed in this study, together with stratigraphic information. BHU = Bowland-
Hodder unit, as used in the main shale gas assessment report. 

In addition, the principal useful parameters derived from the data include Production Index (PI), 
present-day Hydrogen Index (HIpd) and Oxygen Index (OI). PI is the sum of the S1 and S2 

hydrocarbons. HIpd is derived by the ratio of S2 mg HC per gram of organic carbon and values above 
350 are generally rated to be good source rocks (for conventional hydrocarbons, Tissot & Welte 
1978, Fig. V.1.11). OI is the ratio of mg carbon dioxide per g organic carbon. HI and OI are plotted to 
be comparable with the van Krevelen diagram, showing the branching of the different kerogen types 
I (lacustrine, algal, oil prone), II (marine, oil prone), III (terrestrial, gas prone) and IV (oxidised or 
inertinite). From the work of Jarvie, in particular, it seems that these types cannot be fixed on such 
diagrams because there is a progressive change with increasing maturity (Jarvie et al. 2005). The 
immature Barnett Shale is Type II kerogen which has been converted to plot in the Type III field 
within the gas window fairway (Jarvie et al. 2005). Kerogen, of any type, once deeply buried or 
heated becomes gas prone and this explains the difference between conventional and 
unconventional plays. Carbon and hydrogen are lost during hydrocarbon generation. Gas is present 
in the source rock at lower maturities (Ro = 1.1% in the Newark East shale gas field (Texas), Smith et 
al. 2011) than in conventional gas fields (gas window Ro >1.3%) because it has not migrated. 
Overmaturity is a well-worn phrase in conventional exploration, effectively writing off some areas 
which deserve to be re-evaluated for unconventional hydrocarbons. 

Total organic carbon (TOC) 

Of the 16 wells, notably the Grove 3 and Brigg 1 samples were visually very light coloured, because 
they were from conventional reservoirs and give low TOC values (Figure 2). Samples from the other 
14 wells had the appearance of dark grey and black shales containing probable organic matter. 
Rempstone 1, Ratcliffe-on-Soar 1 and Old Dalby 1, located in the Widmerpool Gulf, the southern 
sub-basin within the Pennine Basin, all had fairly consistent characters including consistently high 
TOC (Figure 2). 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

The Barnett Shale at crop has very high TOC (13.08%, Jarvie et al. 2005). During maturation organic 
matter is inevitably destroyed (Jarvie 2008). Jarvie et al. (2005) reported that ‘artificially maturing’ 
immature samples from one well reduced TOC by approximately 36% from its original value, 
whereas at peak oil maturity this had only been reduced by 18%. This could explain why the three 
Widmerpool Gulf wells had the highest TOC values and are immature (Figure 2). 

Comparing the Pennine Basin samples with the Barnett Shale makes it clear that the former are 
slightly leaner (Figure 5). 

Figure 2. Average total organic carbon content of samples from the 16 selected wells. 

Kerogen type 

Kerogen types are identified by plotting on a modified van Krevelen diagram (Figure 3). Typical Type 
I (algal, lacustrine Green River Shale), Type II (oil prone Toarcian of Paris Basin) and Type III (gas 
prone Tertiary of Greenland) have been included. Some publications show the Type III curve 
emerging at about HI=100 (e.g. Tissot & Welte 1978, fig. V.1.12), nearer to the Greenland example 
(Figure 3, blue cross), which would seem preferable, so that the Paris Basin example plots in the 
Type II field. Some other publications have a Type IV kerogen (also near to HI=0) (Boyer et al. 2006). 
Type IV kerogens may have lost all generative potential at an early stage, perhaps as a result of 
oxidation or combustion. 

Roche (2012, Fig. 7) showed Thistleton 1 samples as being Type III kerogens, mostly in the oil 
window, whereas Bowland outcrop samples plotted at immature or early oil window as Type II 
kerogens. 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

However, many Barnett Shale samples also plot near the base of modified van Krevelen diagrams 
and are considered to have been originally Type II kerogens, based on Barnett low maturity outcrops 
in the southern margin of the Fort Worth Basin e.g. at Lampasas (Jarvie et al. 2005). The samples in 
deeper parts of the basin are interpreted to have ‘matured’ to positions with very low HI (Figure 3). 
Similarly, the DECC samples differentiate into Widmerpool Gulf well samples, which plot in the Type 
II field, and the Craven Basin well samples that plot near the base of the graph. One interpretation is 
that they may have originated as the same Type II kerogens, but ‘migrated’ to the base of this 
diagram as they matured. 

Figure 3.  Modified van Krevelen diagram showing examples of Types I-III kerogens and relationship 
to the samples [Red = Rempstone 1; green = Ratcliffe-on-Soar 1; purple =Old Dalby 1; blue = 
remainder (see Fig. 1 for well locations)] 

Tmax (measured in degrees centigrade) 

Tmax is the Rock-Eval equivalent of vitrinite reflectance (Ro), similarly indicating the maturity of the 
sample. Conversion of Tmax to vitrinite reflectance is by the following formula (Jarvie et al. 2005): 

Calculated Ro % = 0.018 x Tmax - 7.16 

In the spreadsheet (Appendix 1), the various maturity windows have been indicated by the cell 
background colour. Immature samples have a background yellow, oil window samples are green, 
shale wet gas window samples are orange and shale dry gas samples are red. 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

Very low Tmax is recorded for two samples. The Heywood sample (Tmax = 352) and one Swinden 
sample (Tmax = 331) are not shown on Figure 4. These two samples might be comparable with 
Barnett Shale and Bossier Shale Type III gas-prone sediments (Jarvie et al. 2007), but the rest of the 
Swinden 1 samples are within the dry gas window. Tmax becomes more erratic at high maturity. The 
current samples conform quite closely to the pattern established for the Barnett Shale (Jarvie et al. 
2005). The low Swinden Tmax of 331 should perhaps be disregarded. Four samples at about 410-430 
Tmax might indicate both immaturity and low HI, possibly indicating non-prospective shale. These 
samples are from Heywood 1, Bosley 1 and Ratcliffe-on-Soar 1 (2) wells, although other samples 
from Bosley 1 and Ratcliffe-on-Soar 1 plot more uniformly with the Barnett Shale model. 

Figure 4. Plot of Hydrogen Index versus Tmax. This is known as a modified Espitalie kerogen type and 
maturity plot. 

Hydrogen Index 

The HI of 500 to about 160 obtained from the Widmerpool Gulf samples from wells Rempstone 1, 
Ratcliffe-on-Soar  1 and Old Dalby 1 defines this group as Type II, comparable with the Mitcham well 
of the Barnett Shale kerogen (Figure 4). This is supported by other studies showing Type II (HI = 
248.5) and some Type III (HI = 46.1) in the Pennine Basin (Ewbank et al. 1993). With increasing 
maturity the HI decreases, so that above Tmax = 460 (at the onset of gas window maturity) the HI 
values of this study and the Barnett wells are mainly below 50 (Figure 4). 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

Remaining hydrocarbon potential (S2) 

Plotting S2 against TOC, as done for the Barnett Shale (Jarvie & Lundell 1991, Jarvie et al. 2005), 
shows that a similar pattern occurs for the current Pennine Basin (DECC) data (Figure 5). The types of 
kerogen are shown, together with the organic lean area (TOC <1%) and the Barnett Shale maturation 
trend. This trend shows that during maturation, TOC declines (Mitcham well, Jarvie et al. 2005), 
incidentally creating porosity within the thermally more mature sections. 

Figure 5. Remaining hydrocarbon potential (S2) v TOC (cf. Jarvie & Lundell 1991). The orange arrow 
shows the Barnett Shale maturation trend (from Jarvie 2008). The current data, combining different 
sub-basins, collectively shows a gentler trend, resulting in residually lower TOC than the Barnett 
Shale. [Red = Rempstone 1; green = Ratcliff- on-Soar 1; purple =Old Dalby 1; blue = remainder] 

Production index 

The production index is the ratio of free hydrocarbons to the total free and bound hydrocarbons 
(S1/S1 + S2). Values of 0.1 up to 0.4 define the oil window. Hence in the Widmerpool Gulf  (Figure 6), 
Long Eaton 1, west of Nottingham, is more mature than Rempstone 1, Old Dalby 1 and Ratcliffe-on-
Soar 1, which are south of Nottingham. Long Eaton 1 lies within the gas window at the levels of the 
samples, confirmed by its position on the van Krevelen diagram (Figure 3), whereas the others plot 
within the oil window. 
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Figure 6. Widmerpool Gulf wells showing the onset of the conventional gas window maturity (Long 
Eaton 1) and the conventional oil window maturity (Ratcliffe-on-Soar 1). 

Conclusions 

For the Barnett Shale, Jarvie et al. (2005) concluded that although the shale currently plots in the gas 
window in the Type III kerogen part of the field in a modified van Krevelen diagram, the original 
kerogen had been Type II. This was based on outcrop data and data from immature wells. This 
important conclusion showed that during maturation the type of kerogen appears to change and the 
TOC decreases. An almost identical situation has been proven for the Craven Basin samples of this 
study with respect to the less-mature Widmerpool Gulf wells (with the notable exception of Long 
Eaton 1). The samples that do not fit the Barnett model are those which have a low Tmax (i.e. are pre-
or early oil window), but these also have a low hydrogen index. Apart from the Heywood well, these 
are wells with samples that otherwise plot within the Barnett model. 

This geochemical evidence supports the comparison made by Smith et al. 2011 between the UK 
Upper Bowland Shale and the US Barnett Shale and the previous decision to compare the potential 
productivity of the UK Carboniferous Pennine Basin Upper Bowland Shale with the ongoing 
production from the Fort Worth Basin’s Barnett Shale (DECC 2010). However, it should be 
emphasised that the Upper Bowland Shale is organically leaner than the Barnett Shale. 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

Appendix A1. Selected output from the Rock-Eval analysis of 16 wells in central Britain. The various maturity windows are indicated by the cell background 
colour: yellow = immature, green = oil window, orange = shale wet gas window, red = shale dry gas. 

Well 
BGS sample 
number 

Depth 
(m) 

Depth 
(ft) 

S1 
(mg/g) 

S2 
(mg/g) PI 

Tmax 
(°C) 

S3 
(mg/g) 

S3' 
(mg/g) 

PC 
(%) 

RC 
(%) 

TOC 
(%) HI OICO OI 

pyroMINC 
(%) 

oxiMINC 
(%) 

MINC 
(%) 

Black Hill 13003-0001 66.5 218.2 0.19 1.22 0.14 467 0.27 7 0.13 1.85 1.98 62 9 14 0.19 0.07 0.26 

Black Hill 13003-0002 68.8 225.7 0.3 0.99 0.23 450 0.11 1.9 0.12 1.91 2.03 49 3 5 0.06 0.07 0.13 

Black Hill 13003-0003 69.6 228.3 0.4 1.33 0.23 450 0.12 4.3 0.15 2.3 2.45 54 5 5 0.12 0.21 0.33 

Black Hill 13003-0004 70.5 231.3 0.23 0.82 0.22 456 0.13 1.3 0.1 2.15 2.25 36 5 6 0.04 0.1 0.13 

Black Hill 13003-0005 71.4 234.3 0.32 0.97 0.25 445 0.19 3 0.12 2.03 2.15 45 4 9 0.09 0.35 0.44 

Black Hill 13003-0006 72.3 237.2 0.45 1.42 0.24 449 0.17 1.6 0.17 2.17 2.34 61 6 7 0.05 0.19 0.24 

Black Hill 13003-0007 73.2 240.2 0.32 1.16 0.22 447 0.21 3.6 0.14 1.99 2.13 54 3 10 0.1 0.41 0.51 

Black Hill 13003-0008 74.1 243.1 0.34 1.41 0.19 440 0.26 5.6 0.16 1.75 1.91 74 4 14 0.16 0.46 0.61 

Black Hill 13003-0009 75.0 246.1 0.29 0.93 0.24 442 0.24 13 0.11 1.55 1.66 56 2 14 0.36 2.91 3.27 

Blacon East 13003-0010 6122.0 0.03 0.11 0.21 461 0.12 3.70 0.02 0.63 0.65 17 5 18 0.10 0.17 0.27 

Blacon East 13003-0011 6134.0 0.10 0.31 0.24 460 0.22 5.00 0.04 1.36 1.40 22 2 16 0.14 0.32 0.46 

Blacon East 13003-0012 6139.0 0.28 0.85 0.25 451 0.38 14.20 0.11 4.03 4.14 21 3 9 0.39 2.66 3.05 

Blacon East 13003-0013 6147.6 0.48 1.30 0.27 457 0.33 8.40 0.16 5.52 5.68 23 1 6 0.24 1.14 1.37 

Blacon East 13003-0014 7423.0 0.01 0.19 0.06 488 0.21 7.20 0.03 1.13 1.16 16 3 18 0.20 7.86 8.06 

Blacon East 13003-0015 7428.0 0.00 0.05 0.04 501 0.30 10.40 0.01 0.66 0.67 7 4 45 0.28 3.51 3.79 

Blacon East 13003-0016 7432.6 0.00 0.00 0.60 496 0.26 3.80 0.01 0.16 0.17 0 24 153 0.10 9.18 9.28 

Bosley 13003-0017 2002.2 6568.9 0.00 0.00 0.76 497 0.28 9.5 0.01 0.22 0.23 0 13 122 0.26 11.11 11.37 

Bosley 13003-0018 2003.0 6571.5 0.01 0.11 0.08 431 0.37 10.6 0.02 1.07 1.09 10 3 34 0.29 6 6.3 

Bosley 13003-0019 2003.7 6573.8 0.01 0.03 0.21 581 0.38 7.7 0.02 0.94 0.96 3 5 40 0.21 10.03 10.24 

Bosley 13003-0020 2004.0 6574.8 0.00 0.00 0.29 495 0.39 4.5 0.01 0.09 0.1 0 50 390 0.12 11.28 11.41 

Bosley 13003-0021 2005.8 6580.7 0.02 0.04 0.31 447 0.51 7.5 0.03 0.72 0.75 5 15 68 0.21 9.9 10.11 

Bosley 13003-0022 2006.4 6582.7 0.01 0.04 0.22 591 0.46 11.2 0.02 1.34 1.36 3 7 34 0.31 5.44 5.75 

Brigg 1 13003-0023 1928.9 6328.4 0.08 0.37 0.18 443 0.44 2.90 0.05 0.52 0.57 65 7 77 0.08 0.01 0.09 

Brigg 1 13003-0024 1930.0 6332.0 0.00 0.00 0.00 453 0.13 1.70 0.01 0.06 0.07 0 57 186 0.05 12.16 12.20 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

Well 
BGS sample 
number 

Depth 
(m) 

Depth 
(ft) 

S1 
(mg/g) 

S2 
(mg/g) PI 

Tmax 
(°C) 

S3 
(mg/g) 

S3' 
(mg/g) 

PC 
(%) 

RC 
(%) 

TOC 
(%) HI OICO OI 

pyroMINC 
(%) 

oxiMINC 
(%) 

MINC 
(%) 

Brigg 1 13003- 1930.8 6334.6 0.01 0.01 0.52 418 0.14 4.20 0.01 0.05 0.06 17 50 233 0.11 11.75 11.87 

Brigg 1 13003- 1931.5 6336.9 0.01 0.05 0.18 429 0.16 2.20 0.01 0.09 0.10 50 20 160 0.06 12.31 12.37 

Clitheroe 13003- 122.9 403.2 0.65 1.21 0.35 463 0.24 6. 0.17 1.89 2.06 59 5 12 0.18 4.77 4.95 

Clitheroe 13003- 127.3 417.7 0.21 0.42 0.34 459 0.17 6.30 0.06 1.02 1.08 39 3 16 0.17 3.41 3.58 

Clitheroe 13003- 215.05 705.5 0.15 0.25 0.37 455 0.20 8.60 0.04 0.68 0.72 35 10 28 0.23 6.19 6.43 

Clitheroe 13003- 218.08 715.5 0.15 0.42 0.27 460 0.17 6.20 0.06 1.32 1.38 30 6 12 0.17 2.60 2.78 

Clitheroe 13003- 222.99 731.6 0.50 1.02 0.33 457 0.27 7.60 0.14 2.16 2.30 44 5 12 0.21 4.32 4.53 

Clitheroe 13003- 228.2 748.7 0.40 0.71 0.36 456 0.26 8. 0.11 1.52 1.63 44 7 16 0.23 3.60 3.83 

Clitheroe 13003- 232.2 761.8 0.14 0.20 0.41 458 0.19 7. 0.04 0.81 0.85 24 8 22 0.21 6.81 7.02 

Grove 3 13003- 2305.7 7564.6 0.01 0.00 0.97 496 0.23 9.00 0.01 0.09 0.10 0 10 230 0.25 13.07 13.32 

Grove 3 13003- 2306.5 7567.3 0.00 0.00 0.00 495 0.32 11.60 0.01 0.11 0.12 0 17 267 0.32 12.92 13.24 

Grove 3 13003- 2314.66 7594.0 0.00 0.00 0.00 495 0.39 17.00 0.01 0.22 0.23 0 9 170 0.46 12.72 13.19 

Heywood 13003- 1600.0 5249.2 0.09 0.06 0.59 414 0.36 12.30 0.03 0.58 0.61 10 8 59 0.34 8.92 9.26 

Heywood 13003- 1601.0 5252.6 0.04 0.06 0.40 352 0.22 8.30 0.02 1.08 1.10 5 5 20 0.23 1.71 1.94 

Heywood 13003- 1602.4 5257.2 0.01 0.02 0.35 427 0.14 7.40 0.01 0.74 0.75 3 9 19 0.20 0.22 0.42 

Heywood 13003- 1603.3 5260.2 0.00 0.00 0.96 496 0.25 4.80 0.01 0.10 0.11 0 45 227 0.13 9.94 10.07 

High Ings 13003- 95.5 313.3 0.11 0.25 0.30 452 0.17 5.20 0.04 0.49 0.53 47 4 32 0.15 11.05 11.20 

High Ings 13003- 98.0 321.5 0.07 0.37 0.16 455 0.16 7. 0.05 0.99 1.04 36 6 15 0.21 3.62 3.84 

High Ings 13003- 99.0 324.8 0.09 0.36 0.20 454 0.13 8.00 0.04 0.85 0.89 40 4 15 0.22 5.62 5.84 

High Ings 13003- 100.0 328.1 0.13 0.62 0.18 458 0.24 8.30 0.07 1.39 1.46 42 2 16 0.23 2.21 2.44 

High Ings 13003- 103.6 339.9 0.16 0.60 0.21 435 0.49 7.40 0.09 1.04 1.13 53 13 43 0.20 0.04 0.25 

High Ings 13003- 105.0 344.5 0.24 1.22 0.17 463 0.18 9. 0.13 1.76 1.89 65 5 10 0.27 4.85 5.12 

High Ings 13003- 167.5 549.5 0.11 0.43 0.20 460 0.25 11.00 0.06 1.25 1.31 33 5 19 0.30 2.84 3.14 

High Ings 13003- 169.0 554.5 0.08 0.42 0.16 463 0.10 4.50 0.05 1.22 1.27 33 6 8 0.12 1.31 1.44 

High Ings 13003- 217.0 711.9 0.21 1.21 0.15 468 0.16 9.00 0.13 2.39 2.52 48 4 6 0.25 5.18 5.43 

High Ings 13003- 219.0 718.5 0.29 1.10 0.21 466 0.18 9. 0.13 1.94 2.07 53 4 9 0.27 7.06 7.33 

High 13003- 219.3 719.5 0.34 1.78 0.16 468 0.18 9.00 0.19 2.61 2.80 64 4 6 0.25 7.36 7.62 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

Well 
BGS sample 
number 

Depth 
(m) 

Depth 
(ft) 

S1 
(mg/g) 

S2 
(mg/g) PI 

Tmax 
(°C) 

S3 
(mg/g) 

S3' 
(mg/g) 

PC 
(%) 

RC 
(%) 

TOC 
(%) HI OICO OI 

pyroMINC 
(%) 

oxiMINC 
(%) 

MINC 
(%) 

Ings+A87 

Long Eaton 13003-0052 5871 0.18 0.37 0.32 464 0.30 7.20 0.06 1.49 1.55 24 3 19 0.20 0.68 0.88 

Long Eaton 13003-0053 5880 0.03 0.05 0.40 461 0.25 6.40 0.01 0.63 0.64 8 5 39 0.17 0.12 0.30 

Long Eaton 13003-0054 5885 0.13 0.28 0.32 469 0.22 5.80 0.04 1.38 1.42 20 1 15 0.16 0.28 0.44 

Long Eaton 13003- 5892 0.19 0.38 0.34 465 0.37 8.50 0.06 1.48 1.54 25 5 24 0.23 1.91 2.14 

Long Eaton 13003-0056 5895 0.12 0.30 0.30 466 0.29 6.70 0.05 1.41 1.46 21 4 20 0.18 0.62 0.81 

Long Eaton 13003-0057 5898 0.12 0.34 0.26 468 0.30 7.20 0.05 1.48 1.53 22 1 20 0.20 0.67 0.87 

Long Eaton 13003-0058 5901 0.04 0.13 0.25 478 0.16 4.40 0.02 0.79 0.81 16 4 20 0.12 0.03 0.15 

Nooks Farm 13003-0059 1401 0.08 0.24 0.25 440 0.21 4.30 0.04 0.56 0.60 40 10 35 0.12 0.57 0.68 

Nooks Farm 13003- 1410 0.28 0.70 0.29 449 0.10 1.20 0.09 1.64 1.73 40 2 6 0.04 0.00 0.04 

Nooks Farm 13003-0061 1417 0.23 0.89 0.21 454 0.12 2.20 0.10 1.17 1.27 70 2 9 0.06 0.00 0.06 

Nooks Farm 13003-0062 1418 0.35 0.89 0.28 447 0.12 1.20 0.11 1.84 1.95 46 6 6 0.03 0.00 0.04 

Nooks Farm 13003-0063 1429 0.25 0.62 0.29 447 0.08 0.90 0.08 1.13 1.21 51 6 7 0.03 0.00 0.03 

Nooks Farm 13003-0064 1432 0.32 0.39 0.45 446 0.04 0.60 0.07 0.60 0.67 58 3 6 0.02 0.00 0.02 

Nooks Farm 13003- 1450 0.30 0.81 0.27 445 0.21 1.90 0.11 2.08 2.19 37 3 10 0.06 0.02 0.08 

Nooks Farm 13003-0066 1519 0.23 0.48 0.33 442 0.24 1.90 0.08 1.86 1.94 25 9 12 0.05 0.03 0.08 

Nooks Farm 13003-0067 1531 0.19 0.45 0.29 449 0.08 0.80 0.06 1.41 1.47 31 3 5 0.03 0.03 0.05 

Old Dalby 13003-0068 1390.6 4562.3 0.91 5.46 0.14 436 0.27 6.70 0.55 2.18 2.73 200 1 10 0.19 2.67 2.86 

Old Dalby 13003-0069 1394.3 4574.5 0.97 4.13 0.19 433 0.47 7.80 0.46 3.07 3.53 117 6 13 0.22 0.28 0.50 

Old Dalby 13003- 1398.5 4588.3 0.80 4.70 0.15 434 0.41 6.00 0.48 2.58 3.06 154 5 13 0.17 0.19 0.36 

Old Dalby 13003-0071 1404.6 4608.3 1.79 9.63 0.16 432 0.45 9.60 0.98 4.14 5.12 188 4 9 0.27 1.10 1.38 

Old Dalby 13003-0072 1437.5 4716.2 1.61 11.10 0.13 435 0.43 5.50 1.09 4.56 5.65 196 4 8 0.16 0.21 0.37 

Old Dalby 13003-0073 1442.5 4732.6 1.12 6.05 0.16 434 0.24 9.30 0.61 1.94 2.55 237 1 9 0.26 7.46 7.72 

Old Dalby 13003-0074 1447.8 4750.0 0.80 4.79 0.14 436 0.42 9.50 0.49 2.05 2.54 189 5 17 0.27 1.08 1.35 

Old Dalby 13003- 1450.8 4759.8 0.93 6.48 0.13 438 0.24 3.10 0.64 2.76 3.40 191 4 7 0.09 0.04 0.13 

Old Dalby 13003-0076 1455.0 4773.6 1.45 7.84 0.16 436 0.33 9.70 0.79 2.39 3.18 247 1 10 0.28 4.86 5.14 

Ratcliffe on 13003-0077 271.7 891.4 0.51 27.44 0.02 434 0.53 1.90 2.38 6.18 8.56 321 6 6 0.08 0.02 0.10 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

Well 
BGS sample 
number 

Depth 
(m) 

Depth 
(ft) 

S1 
(mg/g) 

S2 
(mg/g) PI 

Tmax 
(°C) 

S3 
(mg/g) 

S3' 
(mg/g) 

PC 
(%) 

RC 
(%) 

TOC 
(%) HI OICO OI 

pyroMINC 
(%) 

oxiMINC 
(%) 

MINC 
(%) 

Soar 

Ratcliffe on 
Soar 13003-0078 275.0 902.2 0.50 33.51 0.01 0.34 1.60 2.86 3.87 6.73 498 6 5 0.06 0.03 0.09 435 
Ratcliffe on 
Soar 13003-0079 278.2 912.7 1.09 14.07 0.07 0.62 11.20 1.31 3.28 4.59 307 7 14 0.33 0.33 0.65 423 
Ratcliffe on 
Soar 13003- 281.7 924.2 0.76 9.74 0.07 0.50 9.40 0.91 2.32 3.23 302 6 15 0.27 1.26 1.53 424 
Ratcliffe on 
Soar 13003-0081 285.0 935.0 0.96 13.47 0.07 0.62 9.40 1.25 3.31 4.56 295 7 14 0.27 0.55 0.83 422 
Ratcliffe on 
Soar 13003-0082 287.5 943.2 0.21 2.92 0.07 0.33 3.70 0.30 2.42 2.72 107 14 12 0.11 0.01 0.12 416 
Ratcliffe on 
Soar 13003-0083 289.5 949.8 0.25 4.44 0.05 0.56 12.60 0.43 3.66 4.09 109 11 14 0.35 0.25 0.60 422 

Rempstone 13003-0084 665.0 2181.8 0.86 4.52 0.16 437 0.20 0.50 0.47 2.19 2.66 170 4 8 0.02 0.00 0.03 

Rempstone 13003- 665.3 2182.7 1.67 25.80 0.06 437 1.15 5.80 2.35 4.96 7.31 353 5 16 0.18 0.01 0.19 

Rempstone 13003-0086 666.0 2185.0 1.58 28.53 0.05 438 2.11 25.30 2.59 4.70 7.29 391 6 29 0.70 0.01 0.71 

Rempstone 13003-0087 667.0 2188.3 0.92 27.18 0.03 437 0.50 1.50 2.37 3.50 5.87 463 6 9 0.05 0.01 0.06 

Rempstone 13003-0088 668.0 2191.6 0.10 0.10 0.50 431 0.74 12.30 0.05 1.72 1.77 6 10 42 0.34 7.30 7.64 

Roddlesworth 13003-0089 4226 0.09 0.06 0.62 508 0.72 12.10 0.04 1.71 1.75 3 9 41 0.33 7.38 7.71 

Roddlesworth 13003- 4239 0.15 0.07 0.69 481 0.16 5.20 0.03 0.16 0.19 37 5 84 0.14 11.07 11.21 

Roddlesworth 13003-0091 4250 0.01 0.00 0.99 494 0.12 2.60 0.00 0.07 0.07 0 29 171 0.07 12.07 12.14 

Roddlesworth 13003-0092 4256 0.12 0.06 0.66 415 0.29 9.20 0.03 0.23 0.26 23 19 112 0.25 10.51 10.76 

Roddlesworth 13003-0093 4268 0.00 0.00 0.67 494 0.09 2.00 0.00 0.07 0.07 0 14 129 0.05 12.44 12.49 

Roddlesworth 13003-0094 4277 0.30 0.15 0.66 494 0.22 8.00 0.05 0.33 0.38 39 5 58 0.22 9.73 9.96 

Roddlesworth 13003- 4281 0.02 0.02 0.48 474 0.15 1.90 0.01 0.06 0.07 29 43 214 0.05 11.88 11.94 

Swinden 1 13003-0096 30.0 98.4 0.28 0.66 0.30 447 0.22 8.80 0.09 1.55 1.64 40 8 13 0.24 4.58 4.83 

Swinden 1 13003-0097 33.0 108.3 0.27 0.70 0.28 458 0.16 7.90 0.09 1.64 1.73 40 8 9 0.22 3.10 3.32 

Swinden 1 13003-0098 38.5 126.3 0.25 0.67 0.27 457 0.16 7.10 0.09 1.65 1.74 39 8 9 0.20 3.13 3.32 

Swinden 1 13003-0099 40.5 132.9 0.27 0.58 0.32 456 0.15 8.00 0.08 1.42 1.50 39 8 10 0.22 3.11 3.33 

Swinden 1 13003- 44.7 146.7 0.24 0.67 0.27 455 0.17 8.50 0.09 1.55 1.64 41 5 10 0.23 1.92 2.16 

Swinden 1 13003-0101 48.8 160.1 0.25 0.74 0.25 458 0.16 7.60 0.09 2.21 2.30 32 6 7 0.21 2.70 2.91 
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Well 
BGS sample 
number 

Depth 
(m) 

Depth 
(ft) 

S1 
(mg/g) 

S2 
(mg/g) PI 

Tmax 
(°C) 

S3 
(mg/g) 

S3' 
(mg/g) 

PC 
(%) 

RC 
(%) 

TOC 
(%) HI OICO OI 

pyroMINC 
(%) 

oxiMINC 
(%) 

MINC 
(%) 

Swinden 1 13003-0102 621.2 2038.1 0.04 0.23 0.15 580 0.20 7.70 0.03 2.49 2.52 9 4 8 0.21 4.28 4.50 

Swinden 1 13003-0103 623.0 2044.0 0.03 0.03 0.46 581 0.18 8.70 0.01 0.83 0.84 4 5 21 0.24 7.35 7.58 

Swinden 1 13003-0104 626.8 2056.4 0.03 0.04 0.44 331 0.14 10.60 0.01 1.28 1.29 3 5 11 0.29 3.96 4.25 

Swinden 1 13003-0105 629.5 2065.3 0.04 0.08 0.31 595 0.23 8.90 0.02 1.36 1.38 6 4 17 0.24 6.24 6.48 

Wessenden 1 13003-0106 3505 0.01 0.00 0.98 494 0.19 11.40 0.01 0.29 0.30 0 20 63 0.31 2.45 2.76 

Wessenden 1 13003-0107 3510 0.02 0.00 1.00 494 0.20 10.80 0.01 0.25 0.26 0 15 77 0.29 4.53 4.83 

Wessenden 1 13003-0108 3512 0.01 0.00 1.00 494 0.14 7.40 0.01 0.26 0.27 0 19 52 0.20 4.09 4.29 

Wessenden 1 13003-0109 3513 0.01 0.00 1.00 494 0.18 3.00 0.01 0.29 0.30 0 10 60 0.08 0.46 0.54 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

Appendix C: Stratigraphic data from key wells penetrating the Bowland-
Hodder shales in central Britain 

Non-released wells are in red. BGS boreholes are in bold italics. Note that all depths of subsea, not downhole relative to KB. 
Conf. = confidential 

Well 
abbrev-
iation 

Well name Year 
spudded 

KB 
elevation 
(ft above 

MSL) 

GL 
elevation 
(ft above 

MSL) 
(or DTM) 

Base 
Permian 

(ft below 
MSL) (or 
outcrop) 

Top 
Bowland-

Hodder 
unit (ft 
below 

MSL) 

Base 
Bowland-

Hodder 
unit (ft 
below 

MSL) 

Bowland-
Hodder 

unit 
thickness  

(ft) 

Net 
shale 

upper 
unit (ft) 

ALP Alport 1 1939 930 (928) (Nam) -910 1630+ >2540 ?1000 
ASK Askern 1 1957 25.4 (25) 1033 4595 4787.6+ >193 87 
BECH Becconsall 1 2011 27 (19) conf. conf. conf. conf. conf. 
BLE Blacon East 1 1981 47 32 1318 4214 7387+ >3173 819 
BOS Bosley 1 1986 1332.4 1308.7 (Nam) -223.5 4994 5217.5 408 
BOT Bothamsall 1 1957 117.3 (125) 860 3682.7 4566.7+ >884 412 
BOU Boulsworth 1 1963 1408 1385 (Nam) 1752 3448 1696 98 
BRA Bramley Moor 1 1987 725 714 (West) 2376 3208+ >662 527 
CAL Calow 1 1957 420 (413) (West) 1860 3299+ >1439 475 
CLO Cloughton 1 1986 573 (542) 5969 8535 9527+ >992 317 
CRA Crayke 1 1964 161 (156) 2653 3479 4339+ >860 ? 
CRO Croxteth 1 1953 84 (79) 1579 3216 4132+ >916 419 
DUF Duffield 1966 202 (216) (Nam) -71 3251+ >3322 764 
DUG Duggleby 1 1990 673 650 4869 8393 9351+ >958 324 
EAK Eakring 146 1944 342 (341) 942 1988 4728 2740 ?185 
EDA Edale 1 1937 c.850 (845) (Nam) -850 -93+ >757 ? 
EGM Egmanton 68 1980 126 112.9 1515 3676 6041.9 2365.9 ?10 
ELL Ellenthorpe 1 1945 60 (46) 1181 1181 3538+ >2357 ? 
ERB Erbistock 1 1986 208 184 (West) 3793 5986+ >2193 236 
FLE Fletcher Bank 1 1958 857 (837) (Nam) 3400 4658+ >1258 288 
FOR1 Formby 1 1940 18 (20) 5862 7122 7662+ >540 73 
FOR4 Formby 4 1949 36 (32) 2742 3144 3844+ >700 210 
GAI Gainsborough 2 1959 104.3 (87) 2380 5816 6154.7+ >338.7 0 
GRA Grange Hill 1 2011 73 47.5 conf. conf. conf. conf. conf. 
GRO Grove 3 1981 210.4 192 1766 4909 7253 2344 90 
GUN Gun Hill 1 1938 1157 1142 (Nam) -862 2008 2870 510 
HAN Hanbury 1 1990 467 452 1148 2382 3949 1567 110 
HATM Hatfield Moors 3 1983 29 12 1341 5471 5971+ >500 No logs 
HAT Hathern 1 1954 161 (157) 300 657 1602 945 93 
HEA Heath 1 1919 516 (519) (West) 3034 3484+ >450 ?390 
HES Hesketh 1 1990 41 27 2126 2126 4202+ >2076 798 
HEY Heywood 1 1984 393.8 377.7 (West) 4147.9 4917.9+ >770 180 
HIG High Hutton 1 1987 171 151 3908 6854 8829+ >1975 562 
HOL Holme Chapel 1 1974 891 871 (West) 3964 5566 1602 52 
ILK Ilkeston 1 1985 222.37 208.6 (West) 2335.7 3386.7+ >1051 960 
INC Ince Marshes 1 2011 47.2 33 conf. conf. conf. conf. conf. 
IRO Ironville 5 1984 303.5 290.4 (West) 1439 3452.5 2013.5 95 
KIN Kinoulton 1 1985 147.4 130.9 932 3742.6 4741+ >998.4 369 
KRM Kirby Misperton 1 1985 118 98 5221 6415 11013 4598 868 
KRS Kirk Smeaton 1 1985 123.7 107.6 2.3 4715.5 5243.7 528.2 381 
LONC Long Clawson 1 1943 178 (178) 1222 4022 4527+ >505 85 
LONE Long Eaton 1 1988 129.7 113 382 382 8410 8028 0 (eroded) 

MIL Milton Green 1 1965 63 52.4 (West) 3801 4858 1057 505 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

Well 
abbrev-
iation 

Well name Year 
spudded 

KB 
elevation 
(ft above 

MSL) 

GL 
elevation 
(ft above 

MSL) 
(or DTM) 

Base 
Permian 

(ft below 
MSL) (or 
outcrop) 

Top 
Bowland-

Hodder 
unit (ft 
below 

MSL) 

Base 
Bowland-

Hodder 
unit (ft 
below 

MSL) 

Bowland-
Hodder 

unit 
thickness  

(ft) 

Net 
shale 

upper 
unit (ft) 

NOO Nooks Farm 1 1982 997 980 (Nam) -517 2623+ >3140 824 
NORM Normanby 1 1985 63.7 43.8 2642 6884 7347.7+ >463.7 308 
OLD Old Dalby 1 1988 323 305.8 1128 3587 4532+ >945 268 
PRH Preese Hall 1 2010 25.5 16.7 conf. conf. conf. conf. conf. 
RAN Ranton 1 1980 407 394 1913 4209 5428 1219 ?0 
RAT Ratcliffe-on-Soar 1 1986 124.8 108.1 696 1015.6 5913.2+ >4895 198 
REM Rempstone 1 1985 273.9 259.8 620.1 1912.1 3437 1524.9 297 
ROD Roddlesworth 1 1987 774 754 (Nam) 3369 7332 3963 44 
ROO Roosecote 1970 121.4 (127) 397.4 1615 2501.6+ >886.6 420 
SCA Scaftworth 2 1982 45.6 27.2 1062 6814.2 7585.6+ >771.4 474 
SES Sessay 1 1988 95 80 1225 2164 5405+ >3241 331 
SOU South Leverton 1 1960 37.3 (29) 1913.7 4802.7 5087.7+ >285 124 
STR Strelley 1 1986 436.8 422.1 -376 2412.6 4320.4+ >1907.8 205 
SWI Swinden 1 1978 462.6 456 (Tourn) - - >2310¹ -
THI Thistleton 1 1987 75 15 2964 4019 6945+ >2926 2096 
THO Tholthorpe 1 1965 80.4 (75) 1489.6 2609.6 2969.6+ >360 ? 
TOR Torksey 4 1975 47.2 34.3 2323 5598.8 6019.8+ >421 279 
WEE Weeton 1 1984 166.8 141.7 (Nam) 909 4886 3977 246 
WES Wessenden 1 1987 1631.5 1620 (Nam) -131 368 499 117 
WHM Whitmoor 1 1966 1024 (1018) (Nam) 2096 3426 1330 140 
WID Widmerpool 1 1945 266 (261) 754 2234 5934+ >3700 ?3700 

NB These data present the interpretation used in this study. 

¹ >2310 ft of pre Bowland-Hodder unit shales. 

Other wells 

Well abbrev-
iation 

Well name Well abbrev-
iation 

Well name 

ALD Aldfield 1 MAL1 Malton 1 
APL Apley 1 MAL4 Malton 4 
BARD Bardney 1 MAR Marishes 1 
BART Barton 1 NET1 Nettleham 1 
BEC Beckering 1 NET2 Nettleham 2 (B2) 
BIS Biscathorpe 1 NEW Newton Mulgrave 1 
BIT Bittern's Wood 1 NORG North Greetwell 1 
BLW Blacon West 1 NOR Northwood 1 
BRAF Brafferton 1 PIC Pickering 1 
BRI Brigg 1 PLU Plungar 8A 
BRM Broomfleet 1 PRE Prees 1 
BRO Broughton B1 RAL Ralph Cross 1 
BUT Butterwick 1 ROB Robin Hood's Bay 1 
CHE Cherry Willingham 1 ROS Rosedale 1 
CLE Cleveland Hills 1 RUD Rudston 1 
COL Cold Hanworth 1 SAL Saltfleetby 3 
DUN Dunholme 1 SCAL Scaling 1 
EGT Egton High Moor 1 SCU Scupholme 1 
ELS Elswick 1 SEA Seal Sands 
ESK12 Eskdale 12 SPA Spaldington 1 
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Well abbrev-
iation 

Well name Well abbrev-
iation 

Well name 

FOR Fordon 1 STA Stainton 1 
FOR5 Formby F5 TET Tetney Lock 1 
GLA Glanford 1 WEL Welton 1 
HAR Harlsey 1 WELW Welton West 1 
HEAF Heath Farm 1 WHEL Wheldrake 1 
HEM Hemswell 1 WHE Whenby 1 
HUN Hunmanby 1 WHI Whitwell on the Hill 1 
KED Keddington 1Z 
KEL Kelstern 1 
KIR Kirkleatham 1 
KNU Knutsford 1 
LAN Langtoft 1 
LOC2 Lockton 3 
LOCE Lockton East 1 
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Appendix E: Thermal modelling of the Pennine Basin, central Britain 

Summary 

This report describes a thermal modelling study covering boreholes across the Pennine Basin, central 
Britain, from the East Irish Sea Basin, across the Bowland Basin, through the Cheshire Basin and the 
Widmerpool Trough to the Gainsborough Trough. It forms part of a wider study to assess the extent of 
the region’s shale gas resource. 

The regional structural history of the area includes Early Carboniferous rifting that resulted in a period of 
fault-controlled deposition followed by a Late Carboniferous phase of regional subsidence. This is 
reflected by widespread marine deposition during the Visean, with shallowing marine conditions during 
deposition of the Millstone Grit Group during the Namurian and shallow marine/paralic delta top 
deposition of Coal Measures and Warwickshire Group during the Westphalian. Subsequent regional 
uplift and erosion occurred during the Variscan Orogeny. Sediments were then deposited on this 
erosional surface during renewed subsidence during the Permian – Cretaceous, though deposition was 
interrupted by a short hiatus or period of erosion during the Triassic (Hardegsen event). Following the 
Variscan Orogeny, subsidence resulted in the deposition of Permian and Triassic sediments in shallow 
marine/deltaic/lacustrine/sabkha environments. Based on evidence from the closest outcrops, 
deposition during the Jurassic and Cretaceous is likely to reflect a deepening marine environment. 
Finally, uplift and erosion removed sediments for almost all the basins in this study during the 
Palaeocene – recent times. 

Generally, the present-day heat flow figures calculated from available boreholes are quite modest (50 – 
54 mWm-2), however, in the past, during rifting, this would be expected to have been higher, indeed the 
models in the depocentres of these basins imply heat flows as high as 78 mWm-2 during Early 
Carboniferous rifting and 65 mWm-2 during Cretaceous uplift. 

The strata penetrated by each borehole were entered into a 1-D model. The eroded thicknesses of 
Carboniferous strata for the 1-D models were estimated from surrounding boreholes and published 
sources in order to estimate the model layers needed to represent these eroded sediments. These 
varied from a few hundred metres to over 1000 m of sediment removed during Variscan uplift and 
erosion. Some Permian – Triassic deposits were present in the boreholes used in this study; where these 
sediments had been removed, the eroded Permian – Cretaceous strata thickness was estimated from 
surrounding boreholes and published sources. These estimated eroded thicknesses were then used to 
match the modelled maturity to available vitrinite reflectance (VR) data. Where data were sparse, 
models from nearby boreholes were used to supplement the modelled heat flow. 

Finally,  these 1-D models were combined to generate three 2-D model sections, these are not as 
sophisticated as the 1-D models as simplification is required in order to allow the model to run, 
however, they give a useful overview of the boreholes in context of the depositional basins which 
contain them. For the 2-D sections, it was assumed that the strata layers have a uniform lithology across 
each section, the constitution of which was based on the 1-D models. 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

1. Introduction 

BasinModTM (Platte River Software, Inc.) was used to model the maturity of sediments in selected 
boreholes in the Pennine Basin. The final 1-D models may be used alongside geological assessments of 
the basin to consider the geological history of the Pennine Basin from the Carboniferous to the present 
day. 

The approach taken was to model the boreholes individually using BasinModTM 1-D as these models 
allow entry of detailed lithology and modelling of the heat flow to achieve the best fit to the vitrinite 
reflectance (VR) data. These 1-D models were then used to model the burial history and maturity along 
a 2-D profile between boreholes using interpreted seismic data to complete the section. 

The VR data, 1-D and 2-D models give an understanding of the maturity of the basin and indicate which 
strata have reached sufficient maturity for any organic material which is present to generate oil or gas. 

2. Modelling 

This report describes the results of 1-D thermal models in the Pennine Basin. BasinModTM (Platte River 
Associates, Inc.) was used to model the maturity of sediments in selected boreholes then these 
boreholes were integrated into three 2-D sections. The report considers the region area through the 
Carboniferous to the present day, concentrating on the Bowland Shale where maturity data are 
available. 

The boreholes to be modelled were chosen based on availability of data (Table 1) and the location of the 
boreholes such that the models would contribute to understanding the thermal maturity of these basins 
(Figure 1). 

The 1-D models and 2-D model presented here were produced using Platte River Associates Software 
BasinMod 1-D version 7.61 and BasinMod 2-D version 4.61. Borehole stratigraphy and rock properties 
were used to model compaction and temperature through burial over geological time. The modelled 
maturity and vitrinite reflectance maturity (VR) data were then compared graphically and used to refine 
the model until the best fit to the available data was achieved. Plots of the maturity, temperature vs. 
depth and vs. time were produced. The oil and gas windows were changed from the BasinMod defaults 
after discussion with I. Andrews, BGS. 

BasinMod 1-D calculates heat flow curves based on the finite rifting model of Jarvis & McKenzie (1980). 
This assumes that in an extensional environment there is rapid initial subsidence due to crustal thinning 
associated with a thermal anomaly i.e., high heat flow. Unlike McKenzie’s earlier model, this one 
recognises that continental basin formation by extension takes a finite time. When crustal stretching 
ceases, heat is lost by vertical conduction and the slow decay of the heat flow leads to further 
subsidence due to thermal contraction. For modelling heat flow in basins with limited extension 
(stretching factor β≤ 2), the Jarvis & McKenzie (1980) model assumes that the thermal anomaly 

develops and decays within about 60 Ma. 

In order to match the model to the recorded vitrinite data, estimates of the palaeo-heat flow and 
eroded sediments thicknesses are required. The thickness of sediment removed is estimated based on 
surrounding sediments and the VR data. The palaeo-heat flow is estimated based on known rifting 
events and the slope of the scattered VR point data. Boreholes with more complete VR data were used 
to supplement models where there were fewer VR data available. 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

Minor modifications were made to the Jarvis & McKenzie palaeo-heat flow curves to improve the fit of 
the model to the data. The modelled maturity was calibrated graphically against the maturity data for 
the borehole. The eroded sediment thickness was estimated using vitrinite reflectance (VR) and apatite 
fission track analysis (AFTA) where available. Palaeozoic stratigraphical ages were taken from the BGS 
online stratigraphical tables (Powell 2009 pers. comm., Gradstein et al. 2004 and ICS 2006). Lithology 
mixes to best approximate the stratigraphy were constructed from borehole records held by BGS in the 
National Geological Records Centre (NGRC), and published data. Permo-Triassic deposits are not well 
preserved at all sites across this region. Finally, estimates of water depth, surface palaeo-temperature 
and palaeo-sea level were included. The vitrinite reflectance data were then used for final calibration to 
produce a best-fit, geologically reasonable model. 

The 2-D models were generated by combining results from the calibrated 1-D models. Seismic data was 
used to interpret the horizons between these wells and these profiles were then used to generate 2-D 
section models of basin maturity. Only faults that cut more than one horizon affect calculated model 
results. For simplicity the 2-D model the lithologies were assumed to be uniform across the basin. 
Initially the model was constructed using only the current sediment thickness. The model was ‘coupled’, 
(i.e. the lines separating model layers were joined correctly such that the correct rock properties were 
contained within the appropriate model layers) and successfully run. This initial model was then 
modified to include the Variscan Unconformity and erosional surface. A simplified heat flow based on 
those developed for the 1-D models was used, with a high heat flow in the Carboniferous decreasing to 
present day levels. The broken lines above the Variscan Unconformity and current land surface indicate 
the modelled eroded sediment thicknesses above the Variscan unconformity and present day surface 
(see figure for more detail). It should be noted that the 2-D model cannot model the eroded thickness of 
Carboniferous sediment where the Variscan Unconformity itself has been eroded, instead, the eroded 
sediment thickness is then added to the layers removed by recent erosion, which slightly degrades the 
fit of the VR data compared to the more satisfactory fit of the 1-D models. The Sclater & Christie (1980) 
or exponential method of compaction was chosen. This method was developed from wells on the North 
Sea Central Graben, which may show some overpressuring; correcting for this tends to result in 
undercompaction, which may have affected the fit of the model. 

In general, the models fit the data well and are geologically reasonable. Using the more sophisticated 
and detailed 1-D models to produce a 2-D cross section was a successful approach. There is still 
potential to refine the 2-D model, for example, by varying lithologies across the basin. 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

3. Boreholes modelled 

The boreholes modelled for this report are given in Table 1. Logs and stratigraphic data are available in 
the BGS NGRC and archives. Vitrinite reflectance data were taken from published papers, confidential 
reports, PhD theses or new BGS analytical results (Smith et al. 2012). 

Table 1: Boreholes modelled 

WELL NAME NUMBER DRILLED 
DEPTH 
(m) 

EASTING NORTHING COMMENTS 
(TD – total depth, VR – number of vitrinite reflectance 
data) 

Irish Sea 110/2b-10 2540.51 03°44’ 
34°589’ W 

53°50’ 
38°157’ 

Released well 
16VR (confidential report) 
TD in Millstone Grit (Namurian C Yeadonian – Marsdenian) 

Thistleton 1 SD33NE17 2139.69 339760 437000 Released well 
16VR (Smith et al. 2012) 
TD in Bowland Shale (Brigantian – Pendleian) 

Hesketh  1 SD42NW6 1295.4 343001 425197 Released well 
3VR (Smith et al. 2012) 
TD in Lower Bowland Shale (Brigantian) 

Upholland 1 SD50SW20 1523.39 350440 402900 Released well 
14 VR (Pearson & Russell, 2000) 
TD in Sabden Shale (Arnsbergian – Kinderscoutian) 

Ince Marshes 1 1570 346211 376439 Confidential well 
18 VR (courtesy of IGas Energy Plc.) 
TD in Craven Group 

Blacon East 1 SJ36NE23 2265.88 337890 366860 Released well 
7 VR (Smith et al. 2012) 
TD in Carboniferous limestone (Visean) 

Knutsford 1 SJ77NW4 3045.7 370269 377851 Released well 
4 VR (Pearson & Russell, 2000), 5 AFTA (Lewis et al. 1992) 
TD in Westphalian Coal Measures 

Gun Hill 1 SJ96SE18 904 397230 361820 Released well 
12 VR (confidential report) 
TD in Carboniferous Limestone 

Long Eaton 1 SK43SE161 2752.34 446400 331660 Released well 
8 VR (confidential report) 
TD in Craven Group (Chadian) 

Ilkeston 1 SK44NE47 1103.5 447537 345172 Released well 
3 VR (confidential report) 
TD in Millstone Grit (Arnsbergian) 

Grove 3 SK78SE30 2933.0 476155 381373 Released well 
3 VR (Smith et al. 2012) 
TD in Early Palaeozoic phyllites with Visean (Courceyan) 
overlying 

Gainsborough 2 SK89SW2 1907.74 481774 390785 Released well 
39 VR (confidential report) 
TD in Upper Bowland Shale (with basic igneous extrusive 
rock as lowest layer) 

Kirk Smeaton 1 SE51NW40 1636.0 451142 416097 Released well 
30 VR (confidential report) 
TD in Craven Group (Brigantian) 
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Figure 1. Location of the study area, wells and lines of section 

4. East Irish Sea – Craven Basin section 

4.1 East Irish Sea geology 

The oldest deposits penetrated by the boreholes in this study are of Namurian age. Seismic 
interpretation extends the 2-D model in this basin to the top of the Chadian in the Bowland-Hodder unit. 
The East Irish Sea Basin succession comprises Lower Bowland Shale deposited in a deep marine 
environment in the early Carboniferous (Rowley & White 1998). Rifting and regional extension during 
the Visean resulted in multiple faults showing syn-depositional deposition of thick marine sediments. 
Rifting ceased in the late Visean and thermal subsidence occurred through Namurian and Westphalian 
times and deposition of sediments in paralic and shallow marine environments. This was followed by 
uplift and erosion during the Variscan Orogeny. A second phase of east-west rifting began during 
Permian times, resulting in syn-tectonic deposition of thick Permian and early Triassic sediments in a 
fluvial basin environment followed by marine sediments in the late Triassic. This rifting may have 
continued to the Late Jurassic.  Deposition in deeper marine waters continued through to the Late 
Cretaceous (Rowley & White 1998). This period of rifting and deposition was again followed by uplift 
and erosion, most likely due to magmatic underplating. 

4.1.1 Well 110/02b-10 

This offshore borehole penetrates Namurian to Quaternary sediments and has 16 vitrinite reflectance 
measurements. 

An estimated 800 m of sediment was removed during the Variscan Orogeny and around 1200 m during 
the later erosional period during the Cretaceous uplift. This figure is in agreement with the estimated 
thickness of eroded Carboniferous strata in Rowley & White (1998). 

29 



  
 

  

  
        

       
   

   
   

    
     

   

  

     
 

    
  

  
     

     
   

        
       

     
    

  

     

   
    

    
    

   
    

   
    

      
     

     

 

APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

A satisfactory fit to the data was achieved. The comparison of model maturity and maturity data is 
shown in Figure 2c. The heat flow model (Figure 2b) is fairly well constrained by the slope of the VR data 
curve (Figure 2c). Heat flow appears to have reached 73 mWm-2 during the late Carboniferous, resulting 
in temperatures of around 80ºC in the deepest Westphalian A strata during Carboniferous burial and 
140ºC during deep Cretaceous burial. This model implies that the Westphalian A coals achieved a depth 
of burial of around 3.7 km during the Cretaceous, reaching higher temperatures than during the 
Carboniferous. A change in the gradient of the line is observed at the Variscan Unconformity. The 
model indicates that the Carboniferous Coal Measures reached the oil generation window during the 
Triassic and the gas generation window during the Cretaceous. 

4.2 Craven Basin geology 

During the Devonian, Old Red Sandstone was deposited in a continental environment. In the early 
Visean, a marine transgression resulted in deposition of shallow marine sediments and water depths 
increased to deeper marine in the late Visean as the basin subsided as an asymmetrical southward-tilted 
graben along the Pendle Fault. The Bowland Shale was deposited in the final stages of Visean 
sedimentation starting in the Asbian. In the early Namurian, these seas shallowed until during the late 
Namurian – early Westphalian sediments are of coastal/alluvial/lacustrine/nearshore origin. The 
Namurian sediments show cyclical deposition and can be correlated across the basin using marine 
bands. The Millstone Grit Group was deposited in a deltaic environment, sourced from the north. Over 3 
km of Devonian – Courceyan sediments are recorded in the basin and over 2.5 km of Visean sediments 
(Aitkenhead et al. 2002). Although the younger rocks have been eroded in the Craven Basin, it was 
assumed that the younger sediments were also deposited as they are present close to this basin in the 
region west of the Pennines. The Westphalian Coal Measures were deposited as cyclothems in swampy 
environment followed by the alluvial/lacustrine Warwickshire Group in the Pennine region. 

Sills and dykes in this region are recorded to have ages of 296 ±15 and 302 ±20 Ma. 

Carboniferous deposition was followed by uplift and erosion during the Variscan Orogeny. Following this 
uplift, the basin subsided and Permian and Triassic sediments were deposited in a major rift system. The 
Craven Basin (previously Bowland Basin or West Lancashire Basin) was contiguous with the East Irish Sea 
Basin and Cheshire Basin during the Carboniferous and Permian-Triassic (Rowley & White 1998) during 
regional subsidence and subsequent uplift. Preserved Permo-Triassic sediments are 1 km thick and 
locally over 2 km thick. As the top of these sediments are eroded, the thickness of these sediments was 
initially greater. The Triassic Hardegsen unconformity is believed to be present across this basin 
(Aitkenhead et al. 2002). 

The current heat flow in this basin is around 50 mWm-2 based on observations in the boreholes at 
Thornton Cleveley and Weeton Camp (Downing & Gray 1986), so it was assumed the present day heat 
flow in Thistleton 1 and Hesketh 1 is the same. 
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Figure 2. 110/2b-10 model, 2a (top) shows the depositional history and isotherms (isotherms are at 20°C 
intervals), the blue polygons at the top represent water depth, 2b (centre) shows the modelled palaeo-
heat flow and 2c (bottom) compares the modelled VR maturity and VR data. 
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4.2.1 Thistleton 1 

The 16 vitrinite data for Thistleton 1 have quite a broad scatter (Figure 3), the relatively gentle slope 
implies a low heat flow, but given the scatter of the data, and the heat flow models for the nearby 
Hesketh 1 and 110/2b-10, the palaeo-heat flow may actually have been higher and the thickness of 
eroded sediment, lower. However, despite uncertainty in the model, the VR data do indicate that the 
Bowland Shale reached the oil generation window in this borehole. 

The lower part of the Pendleian is offset from the upper part by faulting as shown by the offset of VR 
data (also A. Carr pers. comm.). Unfortunately, this cannot be modelled without affecting the rest of the 
model or falsely giving the oldest sediments in this basin a greater age in order to allow sufficient time 
for these sediments to mature and model the deeper burial of these sediments. It should be noted that 
due to this, the model indicates that the Bowland Shale only reaches the oil window in this borehole, 
though the sediments below the fault do reach the gas window (Figure 3c). 

The high VR values suggest great quantities of sediment were deposited in the Carboniferous and 
eroded during the Variscan Orogeny. Near Manchester, over 2.5 km of Coal Measures and Warwickshire 
Group sediments are recorded. In this model, an additional 3 km of Carboniferous sediments were 
included in order to fit the data (Figure 3a). This additional thickness may partly be a result of the lower 
heat flow modelled at this location. 

Permian and Triassic sediments are preserved onshore with 600 m of Permian sediments and over 200 
m of Triassic Sherwood Sandstone and Mercia Mudstone sediments. The model fits the data when these 
layers are included as eroded sediments along with a further 3.1 km of deposition during the late 
Permian to Cretaceous, which was then eroded during the final period of uplift. There is more 
uncertainty on this final amount of deposition as the model is less sensitive to this layer, however, in 
order to fit these data, a significant amount of sediment must have been deposited during this period of 
time. 
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Figure 3. Thistleton model, 3a (top) shows the depositional history, 3b (centre) shows the modelled 
palaeo-heat flow and 3c (bottom) shows the modelled VR maturity and VR data. 
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4.2.2 Hesketh 1 

As only 3 VR data points are available for this borehole (Figure 4), this model relies heavily on the nearby 
Thistleton 1 borehole model. The heat flow is subject to the same cautionary note that it may have been 
higher during Carboniferous rifting and that the thickness of deposited sediment may therefore have 
been overestimated. However, despite uncertainty in the model, the VR data do indicate that the 
Bowland Shale reached the oil generation window in this borehole. 

In this case, it was estimated that 1500 m of Namurian and 2500 m of Westphalian – Stephanian 
sediments were deposited during the Carboniferous then eroded from the basin during the Variscan 
Orogeny. The Bowland Shale reached model temperatures of 120°C and depths of burial of almost 5 km, 
pushing these sediments into the oil generation window. Following uplift and erosion during the 
Variscan Orogeny, around 660 m of Permo-Triassic sediments are penetrated by the borehole. The 
model includes a further 3.9 km of Triassic – Cretaceous sediments which again increased the model 
temperatures of the Bowland Shales to 120°C and around 5 km depth of burial. These sediments were 
then removed by the latest uplift and erosion to the present day. 

The heat flow for this model was based on the Thistleton model as there are only three VR data points 
and so the slope of the model is not well constrained outside of this small window. 

The model indicates that the Bowland Shale Formation reached the oil generation window during the 
Carboniferous. 

4.2.3 2-D section 

Figure 5 and Figure 6 show the 2-D model which was generated using the 1-D models as a basis. Figure 5 
shows the current sediment thicknesses across the basin as interpreted from seismic data. These are 
shown as coloured polygons, dashed lines show missing thicknesses of strata. A reasonable fit to the 
maturity data was achieved (Figure 6 and Figure 8) and this section shows the great thickness of eroded 
sediment implied by the models in order to achieve the maturity recorded by the VR data for the 
Hesketh and Thistleton boreholes in the Bowland Basin. It should be noted that as the lithologies used 
for the 2-D section are averaged for each formation and as such, the models are less detailed that the 1-
D versions, the thickness of sediments over Hesketh and Thistleton is less than shown for the 1D models 
for this 2-D section. This highlights the need for a combined approach – using the 1-D models to assess 
the wells in detail and the 2-D model for a basin overview. 

The present day gas window is shown in Figure 7. This indicates that most of the Bowland-Hodder unit is 
currently in the gas generation window (VR 1.1 – 3.5%). It should be noted that the deepest part of the 
Irish Sea Basin is uncontrolled by VR data and so the maturity model here is unconstrained. This area 
appears to have undergone rapid syn-depositional faulting so the maturity may in fact be 
underestimated here since eroded sediment thicknesses were estimated based on nearby boreholes but 
no VR data were available for this project in order to verify the model in this sub-basin. 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

Figure 4. Hesketh model, 4a (top) shows the depositional history, 4b (centre) shows the modelled palaeo-
heat flow and 4c (bottom) shows the modelled VR maturity and VR data. 
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Figure 8. Maturity at well locations across the Irish Sea – Craven Basin 2-D section. The pink line shows 
model maturity, black crosses show VR data 

5. Cheshire Basin section 

5.1 Cheshire Basin geology 

During most the Devonian, the Cheshire Basin was a region of erosion. Crustal extension began in the 
late Devonian and continued through the Visean. During the Early Visean, shallow marine deposition 
occurred in the north of the Cheshire Basin. Subsidence continued into the Late Visean, during which 
the whole Cheshire Basin region underwent marine deposition with a deeper marine environment 
prevailing in the north of the region. This was followed by uplift during early Namurian times when the 
south of the Cheshire Basin became emergent though the north of the basin remained an area of 
shallow marine deposition until the late Namurian when a more coastal/deltaic environment prevailed 
(Aitkenhead et al. 2002). 

The Cheshire Basin is a half-graben formed as one of a series of sedimentary basins during Permo-
Triassic rifting. The Permo-Triassic infill of this basin may have been up to four or five kilometres thick 
prior to geologically recent erosion. The basin is flanked to the east and west by Carboniferous and older 
rocks. The succession in this region displays widespread uplift and erosion resulting from the Variscan 
Orogeny (Plant et al. 1999). 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

5.1.1 Upholland 1 

The palaeo-heat flow from a previously modelled borehole (Keele 1) was used as a basis for the heat 
flow for Upholland 1 as the vitrinite reflectance dataset is more complete (Vincent & Merriman 2002). 
Pearson & Russell (2000) provided VR data for Westphalian A to Pendleian age strata from the 
Upholland borehole. Stratigraphical data from Plant et al. (1999) were used to model the eroded 
stratigraphy. The VR data were then used to calibrate the model and the heat flow history was assumed 
to follow a similar pattern to that at Keele 1. Coal Measures in the Westphalian are algal-rich, which may 
have caused suppression of the VR values and therefore account for the slight difference between the 
model maturity curve and maturity data points in the Carboniferous coals of Upholland 1 (Figure 9c). 

The Upholland 1-D model indicates approximately 800 m of sediment was removed during the Variscan 
uplift and 50 m during the Hardegsen event (Figure 9a), which agrees with thicknesses estimated in 
Plant et al. (1999). Permo-Triassic cover was calculated to be around 900 m, with a further 500 m 
deposited during the Jurassic and Cretaceous. The heat flow and temperatures reached are slightly 
lower than in the centre of the Cheshire Basin; this model shows heat flow of up to 73mWm-2 during the 
early Carboniferous, with temperatures of around 120°C in the Westphalian A coals, and slightly lower 
temperatures achieved on reaching a depth of about 2 km during the Cretaceous (Figure 9a and b). 
These results are fairly well constrained by the VR data. Figure 9c indicates that the Coal Measures 
reached the oil generation window.  

5.1.2 Ince Marshes 1 

Ince Marshes 1 lies between Knutsford 1 and Blacon East 1 in terms of proximity to the depocentre of 
the Cheshire Basin. It penetrates the Upper Bowland Shale (Figure 10a). The model achieved a 
reasonable fit to the data with an estimated 190 m additional Carboniferous strata added then eroded 
during the Variscan Orogeny and over 1 km of Permian – Triassic strata and 500 m of Jurassic to 
Cretaceous strata added then eroded during the Hardegsen and Palaeocene – Recent erosion. Model 
heat flow is shown in Figure 10b. Based on this model, the Upper Bowland Shale reached temperatures 
over 100°C during Carboniferous burial, and 120°C during deeper Cretaceous burial (Figure 10a), 
following a similar pattern to Knutsford 1. According to the model, both the Coal Measures and the 
Upper Bowland Shale reached the oil generation window (Figure 10c) from the Carboniferous onwards. 
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Figure 9. Upholland 1 model, 9a (top) shows the depositional history, 9b (centre) shows the modelled 
palaeo-heat flow and 9c (bottom) shows the modelled VR maturity and VR data. 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

Figure 10. Ince Marshes 1 model, 10a (top) shows the depositional history, 10b (centre) shows the 
modelled palaeo-heat flow and 10c (bottom) shows the modelled VR maturity and VR data. 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

5.1.3 Knutsford 1 

Limited vitrinite reflectance data are available in Pearson & Russell (2000) for the Knutsford 1 borehole. 
Porosity data from Plant et al. (1999) was also used. Borehole temperature data is also available in 
Burley et al. (1984). Lewis et al. (1992) provided AFTA data from the Westphalian, Permian and Triassic. 
Following the findings in Plant et al. (1999), fluid circulation in the basin was included in the model, 
using the '2-D fluid flow' and 'delta heat' options in BasinMod. ‘2-D fluid flow’ assumes fluid flows 
through the borehole and surrounding area rather than a closed system with fluid circulation contained 
within the borehole. It was assumed that most circulation occurred in the porous Permo-Triassic 
sandstones during the Palaeogene. Borehole data were taken from records held in the NGRC at BGS 
Keyworth, and the eroded stratigraphy was estimated using information in Plant et al. (1999). These 
data were then used to develop a best-fit model. 

The Knutsford 1-D model (Figure 11a) shows a different burial history from that of Keele 1 and 
Upholland 1, with highest temperatures achieved during the Cretaceous. The model implies removal of 
approximately 500 m of Carboniferous sediment during Variscan uplift, with deposition recommencing 
with the Sherwood Sandstone (Figure 11a). An estimated 50 m of overburden was also removed during 
the Hardegsen event. The model palaeo-heat flow peaked at 78 mWm-2 during the late Carboniferous 
(Figure 11b), with the Westphalian C coals reaching temperatures of around 60°C during the 
Westphalian and 160°C during Cretaceous/Palaeogene burial. Model calculations imply that late 
Cretaceous burial beneath 2.8 km of Permo-Triassic strata, with a further 1 km of Jurassic and 
Cretaceous strata, resulted in these coals experiencing burial of around 4 km and temperatures of 
140°C. Figure 11c indicates that the Coal Measures reached the oil generation window during the 
Triassic and the gas generation window during the Cretaceous. 

5.1.4 Blacon East 1 

Blacon East 1 is located away from the main Cheshire Basin depocentre and Permo-Triassic sediment 
thicknesses are therefore thinner than at Knutsford 1. Eroded sediment thicknesses were estimated 
using Plant et al. (1999). 

Limited VR data were available for Blacon East 1. The model implies removal of c.600 m of 
Carboniferous sediment during Variscan uplift, with deposition recommencing with the Sherwood 
Sandstone (Figure 12a). An estimated 50 m of overburden was also removed during the Hardegsen 
event. The model palaeo-heat flow peaked at 78 mWm-2 during the late Carboniferous (Figure 12b), 
with the deepest Bowland Shale sediments achieving temperatures of 160°C. Model calculations imply 
that late Cretaceous burial beneath 220 m of Permo-Triassic strata, with a further 200 m of Triassic, 
Jurassic and Cretaceous strata, resulted in these coals experiencing burial of around 1.5 km and 
temperatures of 140°C. Figure 12c indicates that the Bowland Shale reached the gas generation window 
during the Carboniferous. 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

Figure 11. Knutford model, 11a (top) shows the depositional history, 11b (centre) shows the modelled 
palaeo-heat flow and 11c (bottom) shows the modelled VR maturity and VR data. 
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Figure 12. Blacon East 1 model, 12a (top) shows the depositional history, 12b (centre) shows the 
modelled palaeo-heat flow and 12c (bottom) shows the modelled VR maturity and VR data. 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

Figure 16. Maturity from the Cheshire Basin 2-D model at the borehole locations across the basin. The 
pink line shows the model maturity, the black crosses show the VR data 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

5.1.5 2-D section 

Figure 13 and Figure 14 show the 2-D model which was generated for the Cheshire Basin section using 
the 1-D models as a basis. 

Figure 13 shows the current sediment thicknesses across the basin as interpreted from seismic data. A 
good match to the data was obtained (Figure 14 and Figure 16) given the limitations on entering eroded 
thicknesses as described in section 2; i.e. that the eroded Carboniferous thickness has been added to the 
eroded thickness of sediment removed by the latest erosion and the time for the start of this combined 
erosion was given as the end Carboniferous (Figure 13). The model indicates that much of the Bowland-
Hodder unit of Arundian to Pendleian age is in the gas generation window 

6. Widmerpool Gulf – Gainsborough Trough 

6.1 Widmerpool Gulf geology 

The Bowland Shale is thick in this region, with over 2 km predicted by seismic interpretation (Pharaoh et 
al. 2011). In North Staffordshire, the Millstone Grit shows rhythmic deposition in a deltaic environment 
and has a recorded thickness of around 1055 m in boreholes in the Widmerpool Gulf. Deposition began 
in the Marsdenian in South Staffordshire and Widmerpool Gulf became a depocentre for Millstone Grit 
during the Marsdenian. To the north of the region, the Millstone Grit was more argillaceous. 
Westphalian Lower and Middle Coal Measures have a recorded thickness of up to 1220 m in North 
Staffordshire, with Westphalian A sediments being particularly well developed. The oldest Lower Coal 
Measures are found in the northern part of the region. North Staffordshire coalfields show the 
maximum development of Upper Coal Measures and Warwickshire Group, including around 335 m 
Upper Coal Measures and 1320 – 1412 m Warwickshire Group sediments (Hains & Horton 1969). 

In this region, the total estimated thickness of the Sherwood Sandstone Group (SSG) varies widely and 
reaches a maximum thickness in the Cheshire Basin of around 2621 m (Plant et al. 1999). Between 30 – 
152 m of overlying Mercia Mudstone Group (MMG) has been recorded and around 15 m of Rhaetic 
sediments occur near East Leake. Jurassic sediments 352 – 527 m thick have been recorded in boreholes 
and outcrops in this region (Nottinghamshire and the Midlands; Hains & Horton 1969). 

In Derbyshire, there are volcanic rocks of Brigantian age and Tertiary intrusions are recorded in Cheshire 
and Shropshire (Hains & Horton 1969). 
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Figure 17. Gun Hill model, 17a (top) shows the depositional history, 17b (centre) shows the modelled 
palaeo-heat flow and 17c (bottom) shows the modelled VR maturity and VR data. 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

6.1.1 Gun Hill 1 

The Gun Hill 1 borehole shows rapid deposition of thick Carboniferous sequences, with the oldest 
Bowland Shale reaching temperatures of 160°C (Figure 17a). The model implies removal of 
approximately 1320 m of Carboniferous sediment during Variscan uplift.  The model palaeo-heat flow 
peaked at 70 mWm-2 during the late Carboniferous (Figure 17b). Model calculations imply that late 
Cretaceous burial beneath 180 m of Permo-Triassic strata, with a further 600 m of Jurassic and 
Cretaceous strata resulted in temperatures of 120°C in the Bowland Shale. 

The VR data indicate that the Bowland Shale reached the gas generation window. Erosion occurred 
during the Triassic (Hardegsen) and Palaeocene - Recent times exposing Millstone Grit at the surface. 
The model indicates that the Bowland Shale reached the gas generation window during the 
Carboniferous (Figure 17c). 

The fit of the model to the data may also be influenced by the Gun Hill lava, as the additional heat would 
have affected the VR readings of layers immediately underneath. In Figure 17c, a high VR reading is 
recorded immediately underneath the lava flow. 

6.1.2 Long Eaton 1 

The Long Eaton 1 borehole shows Triassic sediments deposited unconformably on the Widmerpool and 
Long Eaton Formations of Asbian to Chadian age (Craven Group). These sediments reached maximum 
depths of burial of around 3 km (Figure 18a) according to the model. The model was constructed with 
an estimated additional 890 m of Carboniferous sediments removed during erosion associated with the 
Variscan Orogeny. This was followed by deposition of around 170 m of Permo-Triassic and 340 m of 
Jurassic – Cretaceous. As there are very few VR data, the heat flow profile from nearby Gun Hill 1 was 
used as a basis for this model. The model implies that the deepest Craven Group sediments reached the 
gas generation window and achieved temperatures of up to 200°C during Carboniferous burial. 

Given the lack of VR data for this borehole (8 VR data within a very narrow depth range, see Figure 18c) 
and the fact that this borehole is located in the depocentre of the Widmerpool Gulf, it seems likely that 
these eroded sediment thicknesses are rather underestimated and confidence in the results of this 1-D 
model is low. 

6.1.3 Ilkeston 1 

The Ilkeston 1 borehole penetrates sediments of Westphalian A and Namurian (Yeadonian – 
Arnsbergian) age (Figure 19a). The model implies that an estimated 600 m of Carboniferous strata were 
removed during Variscan uplift and erosion. This was followed by deposition of Permo-Triassic 
sediments, with a modelled thickness of 540 m and Jurassic – Cretaceous sediments with a modelled 
thickness of 510 m. Limited VR data were available for Ilkeston 1 and the heat flow from Gun Hill 1 
formed the basis for this model. The model implies the deepest Bowland Shale sediments achieved 
temperatures of 120°C during Carboniferous burial (Figure 19a). Figure 19c indicates that the Bowland 
Shale reached the early oil generation window during the Carboniferous. 

Very few VR data are available, so this model should be used with caution; however, the depth of burial 
seems reasonable for the location (near to the margin of the Widmerpool Trough). It should also be 
noted that the VR readings are taken from sediments below a fault shown on the borehole log and the 
data may not give an accurate indication of maturity for this borehole if the rocks have been significantly 
displaced in depth. 
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Figure 18. Long Eaton model, 18a (top) shows the depositional history, 18b (centre) shows the modelled 
palaeo-heat flow and 18c (bottom) shows the modelled VR maturity and VR data. 
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Figure 19. Ilkeston model, 19a (top) shows the depositional history, 19b (centre) shows the modelled 
palaeo-heat flow and 19c (bottom) shows the modelled VR maturity and VR data. 

54 



  
 

  

 

   

  
      

  
   

  

      
       

       
        

    

    
     

   

  
  

   
   

   

  

   
     

     
    

    
      

    
   

     
       

    

 

APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

6.2 Gainsborough Trough geology 

The Bowland Shale was deposited in shallowing marine condition, with deep marine conditions during 
the early Visean and shallow marine conditions during the late Visean. This was followed by deposition 
of shallow marine/deltaic sediments during the Namurian and Westphalian. Following uplift during the 
Variscan Orogeny, this region again subsided through the Permian to become fully marine during the 
Jurassic and Cretaceous. Recent uplift has exposed Permian and Carboniferous rocks in this region. 

Recorded thicknesses of Coal Measures are up to 2200 m and the Warwickshire Group reaches 
thicknesses of up to 140 m east of the Pennine High. Permian sediments in this region are around 88 – 
158 m thick, Triassic Sherwood Sandstone Group sediments are around 400 m thick and Mercia 
Mudstone Group sediments are up to 190 m thick (Aitkenhead et al. 2002). 

Volcanic activity occurred to the south during latest Namurian times. 

The Grove 3 borehole has a heat flow of 54 mWm-2 (Downing & Gray 1986), however, other boreholes in 
this trough such as Ranby 1 and Scaftworth B2 have higher present day heat flows (75 to 83 mWm-2) 
(Downing & Gray 1986). 

Overall, the VR data for the Gainsborough Trough are not as satisfactory as for the other regions 
modelled for this report. There are very limited data for Grove 3 and the data for Gainsborough 2 and 
Kirk Smeaton 1 show a broad scatter. Thus confidence in the models is lower than for models previously 
described. However, it should be noted that a significant number of the VR data for Kirk Smeaton 1 and 
the VR data for Grove 3 are all in the gas generation window. 

6.2.1 Grove 3 

Grove 3 penetrates sediments of Permo-Triassic age resting unconformably on sediments of 
Westphalian C age (Figure 20a). The oldest sediments are Bowland Shales of Courceyan age and the well 
terminated in Early Palaeozoic phyllites. The model implies deposition and subsequent removal of 900 
m of Carboniferous sediment. The deepest Bowland Shale sediments reached temperatures of over 
180°C during Carboniferous burial and again during Cretaceous burial. Over 350 m of Permian sediments 
are recorded in the borehole. An estimated eroded thickness of 1200 m of Permian – Cretaceous 
sediments was also included in the model. The oldest Bowland Shale in the borehole reached the gas 
generation window during the Carboniferous. 

It should be noted that only 1 VR data point was available, so confidence in this model is low and much 
of the heat flow model was based on Gainsborough 2 and Kirk Smeaton 1 which have more complete VR 
datasets (Figure 20c). 
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Figure 20. Grove 3 model, 20a (top) shows the depositional history, 20b (centre) shows the modelled 
palaeo-heat flow and 20c (bottom) shows the modelled VR maturity and VR data. 
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Figure 21. Gainsborough 2 model, 21a (top) shows the depositional history, 21b (centre) shows the 
modelled palaeo-heat flow and 21c (bottom) shows the modelled VR maturity and VR data. 
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APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 

6.2.2 Gainsborough 2 

The Gainsborough 2 borehole penetrates through Permian sediments to the Upper Bowland Shale 
(Figure 21a). Thirty nine VR data were available and the model fit is reasonable, though there is a broad 
scatter on the data. 

The model heat flow is quite low, having a heat flow of around 70 mWm-2 during the late Carboniferous 
(Figure 21b). The deepest Bowland Shale sediments reached temperatures of over 100°C (Figure 21a). 
The Upper Bowland Shale reached the oil generation window during Carboniferous burial. An estimated 
110 m of Carboniferous sediment was removed during uplift during the Variscan Orogeny. Deposition 
during the Permian – Cretaceous was quite thin in comparison with other wells in this area; only 515 m 
is proven in the borehole and a modelled additional 85 m of Permian – Cretaceous sediments eroded by 
the Hardegsen and Palaeocene – Recent erosion were included in the model. Both the low heat flow and 
thin sediment deposition seem unusual given the location is not particularly close to the Gainsborough 
Trough margins. The fit of the 1-D model clearly shows the compromise made here between palaeo-
heat flow and eroded sediment thicknesses; if a greater palaeo-heat flow had been modelled to better 
match the gradient, then the estimated thicknesses of eroded sediment would have been even smaller. 

6.2.3 Kirk Smeaton 1 

Kirk Smeaton 1 lies on a northern basin bounding fault on the Gainsborough Trough. The modelled heat 
flow is quite low having a heat flow of around 65 mWm-2 during the late Carboniferous. The model 
indicates that the Lower Bowland Shale reached temperatures of 120°C during Carboniferous burial and 
140ºC during Cretaceous burial (Figure 22a). An estimated 1 km of sediment was removed during the 
Variscan Orogeny. A small remnant of Permian Collyhurst Sandstone is present in the borehole. The 
removed thicknesses of the Permo-Triassic and Jurassic – Cretaceous layers were 450 m and 800 m 
respectively. The model fit is reasonable (Figure 22c) and the low heat flow and thin sediments are 
typical of boreholes closer to the basin margin than the basin depocentre. The fit of the 1-D model 
clearly shows the compromise made here between palaeo-heat flow and eroded sediment thicknesses; 
if a greater palaeo-heat flow had been modelled to better match the gradient, then the estimated 
thicknesses of eroded sediment would have been even smaller. 

6.2.4 2-D section 

Figure 23 and Figure 24 show the 2-D model which was generated using the 1-D models as a basis. 
Figure 23 shows the current sediment thicknesses across the basin as interpreted from seismic data. A 
good fit to the VR data was achieved (Figure 24 and Figure 26). This section clearly shows the impact of 
the modelled eroded sediments on the maturity of the basins. The deepest parts of the basin have gone 
through the gas window and are now over-mature (Figure 25). Note that the reverse fault near Eakring 
has been included as a normal fault in order to model the sediments as BasinMod 2-D cannot include 
repeated layers in vertical section (Figure 23). Also, where the Variscan erosional surface has been 
removed, most the eroded thickness of Carboniferous sediments has been added to the thickness 
removed by the most recent erosion. 
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Figure 22. Kirk Smeaton model, 22a (top) shows the depositional history, 22b (centre) shows the 
modelled palaeo-heat flow and 22c (bottom) shows the modelled VR maturity and VR data. 
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Figure 26. Maturity model at borehole locations across the Widmerpool Trough - Gainsborough Trough 
2-D section. Pink line shows the modelled maturity, black crosses show VR data. 
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Glossary 

LBS Lower Bowland Shale 

MG Millstone Grit Group 

MMG Mercia Mudstone Group 

SSG Sherwood Sandstone Group 

UBS Upper Bowland Shale 

VR Vitrinite reflectance 
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Appendix D. Detailed correlation of the Bowland-Hodder unit between key wells in the west Bowland Basin. 
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Appendix D. Detailed correlation of the Bowland-Hodder unit between key wells in the Cleveland Basin. 
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Appendix D. Detailed correlation of the Bowland-Hodder unit between key wells in the Humberside area. 
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	1. Summary 
	The assessment of shale gas resources in the UK is in its infancy. This report summarises the background geological knowledge and methodology which has enabled a preliminary in-place gas resource calculation to be undertaken for the Bowland-Hodder (Carboniferous) shale gas playacross a large area of central Britain (Figure 1). 
	1 
	1 


	Marine shales were deposited in a complex series of tectonically active basins across central Britain during the Visean and Namurian epochsof the Carboniferous (c.347-318 Ma). In all of these basins, deep-water marine shales pass laterally into shallow-water shelf limestones and deltaic sandstones. Contemporary basins extend offshore beneath the East Irish Sea and the Southern North Sea. 
	2 
	2 


	The marine shales attain thicknesses of up to 16,000 ft (5000 m) in basin depocentres (i.e. the Bowland, Blacon, Gainsborough, Widmerpool, Edale and Cleveland basins), and they contain sufficient organic matter to generate considerable amounts of hydrocarbons. Conventional oil and gas fields around most of these basins attest to their capability to produce hydrocarbons. 
	The organic content of the Bowland-Hodder shales is typically in the range 1-3%, but can reach 8%. 
	The maturity of the Bowland-Hodder shales is a function of burial depth, heat flow and time, but subsequent uplift complicates this analysis. Where they have been buried to sufficient depth for the organic material to generate gas, the Bowland-Hodder shales have the potential to form a shale gas resource analogous to the producing shale gas provinces of North America (e.g. Barnett Shale, Marcellus Shale). Where the shales have been less-deeply buried, there is potential for a shale oil resource (but, as yet
	In this study, shales are considered mature for gas generation (vitrinite reflectance > 1.1%) at depths greater than c. 9500 ft (2900 m) (where there has been minimal uplift). However, central Britain has experienced a complex tectonic history and the rocks here have been uplifted and partially eroded at least once since Carboniferous times. Because of this, the present-day depth to the top of the gas window is dependent on the amount of uplift, and can occur significantly shallower than 9500 ft. 
	The total volume of potentially productive shale in central Britain was estimated using a 3D geological model generated using seismic mapping, integrated with outcrop and deep borehole information. This volume was truncated upwards at a depth of 5000 ft (1500 m) below land surface (a suggested US upper limit for thermogenic shale gas production) or the depth at which the shale is mature for gas generation (whichever was the shallowest). 
	The volume of potentially productive shale was used as one of the input parameters for a statistical calculation (using a Monte Carlo simulation) of the in-place gas resource (see Appendix A). 
	1 
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	Figure
	Figure 1. Location of the DECC/BGS study area in central Britain, together with prospective areas for shale gas, currently licensed acreage and selected urban areas. Other shale gas and shale oil plays may exist. 
	2 © DECC 2013 
	For the purposes of resource estimation, the Bowland-Hodder unit is divided into two units: an upper post-rift unit in which laterally contiguous, organic-rich, condensed zones can be mapped, even over the platform highs, and an underlying syn-rift unit, expanding to thousands of feet thick in fault-bounded basins, where the shale is interbedded with mass flow clastic sediments and redeposited carbonates. 
	-

	The upper unit is more prospective, primarily due to the better well control which demonstrates its closer resemblance to the prolific North American shale gas plays, in which the productive zones are hundreds of feet thick. The lower unit is largely undrilled, but where it has been penetrated it contains organic-rich shale intervals, whose lateral extent is unknown. 
	This study offers a range of total in-place gas resource estimates for the upper Bowland-Hodder unit shales across central Britain of 164 – 264 – 447 tcf (4.6 – 7.5 – 12.7 tcm) (P90 – P50 – P10). It should be emphasised that these ‘gas-in-place’ figures refer to an estimate for the entire volume of gas contained in the rock formation, not how much can be recovered. 
	There is considerable upside potential in the lower unit, but the resource estimation for this unit has a much higher uncertainty due to the paucity of well data so far and potentially less favourable lithologies. The estimated range of gas in place for this thick unit is 658 – 1065 – 1834 tcf (18.7 – 
	31.2 – 51.9 tcm). The total range for estimated gas in place is 822 – 1329 – 2281 tcf (23.3 – 37.6 – 
	64.6 tcm) (P90 – P50 – P10) for the combined upper and lower parts of the Bowland-Hodder unit. 
	Table
	TR
	Total gas in-place estimates (tcf) 
	Total gas in-place estimates (tcm) 

	TR
	Low (P90) 
	Central (P50) 
	High (P10) 
	Low (P90) 
	Central (P50) 
	High (P10) 

	Upper unit 
	Upper unit 
	164 
	264 
	447 
	4.6 
	7.5 
	12.7 

	Lower unit 
	Lower unit 
	658 
	1065 
	1834 
	18.6 
	30.2 
	51.9 

	Total 
	Total 
	822 
	1329 
	2281 
	23.3 
	37.6 
	64.6 


	This large volume of gas has been identified in the shales beneath central Britain, but not enough is yet known to estimate a recovery factor, nor to estimate potential reserves (how much gas may be ultimately produced). An estimate was made in the previous DECC-commissioned BGS report (2010a) that the Carboniferous Upper Bowland Shale, if equivalent to the Barnett Shale of Texas, could potentially yield up to 4.7 tcf (133 bcm) of shale gas. In the absence of subsurface volumes of potential gas-bearing shal
	Other areas in the UK have shale gas and shale oil potential, and later in 2013 the Jurassic shales in the Weald Basin of southern England will be the subject of a further BGS/DECC study. 
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	2. Introduction to shale gas and resource estimation 
	2.1. History of oil and gas exploration and production in the UK 
	Exploration for oil and gas in the UK began onshore in the late 19th century, but subsequent land-based activity has been episodic, with six principal phases yielding variable success (Evans 1990, Decc 2010b). The earliest reports of hydrocarbons date from 1836, and a well drilled at Heathfield in Sussex in 1895 produced sufficient gas to fuel a gas light for the railway station. The history of exploration through subsequent decades is detailed in DECC (2010b), with the largest gas fields discovered being S
	In recent years (Figure 2), there has been a decline in the number of exploration and appraisal wells drilled for conventional oil and gas onshore, with a shift to coalbed methane (CBM), vent gas and most recently, to wells drilled for shale gas exploration. 
	Figure
	Figure 2. Numbers of onshore exploration and appraisal wells drilled in the past 20 years. 
	Within the study area, significant amounts of gas have been discovered in conventional plays in the Bowland, Cleveland, Edale, Gainsborough, Humber and Widmerpool basins (Figure 3). There was also a natural build-up of methane in the Wyresdale Tunnel, Lancashire, which lead to the fatal Abbeystead explosion in May 1984 (Wilson et al. 1985, Smith et al. 2010). These occurrences provide 
	4 © DECC 2013 
	evidence for working petroleum systems in all of the sub-basins and the expulsion of gas from source rocks which have reached the gas window in the vicinity of the fields. 
	Figure
	Figure 3. Distribution of wells (not including coal-related CBM or vent gas) which have tested gas and oil in central Britain (from DECC data). 
	Oil was commercially produced from Carboniferous oil shales in West Lothian between 1859 and the 1940s, and although shale gas potential was highlighted in the 1980s (Selley 1987, 1996, 2005) it was only in the 13th Onshore Licensing Round in 2008 that companies specifically sought to explore for shale gas. Only one shale gas well has been hydraulically fractured, Cuadrilla’s Preese Hall 1 well during 2011, but that test was suspended before completion of the fracturing programme after two small earthquakes
	2.2. Resources vs. reserves 
	In simple terms, the resource estimate for any shale gas play is the amount of gas in the ground (some of which might never be produced), while the reserve estimate is a more speculative measure which describes the amount of gas that you might be able to extract given appropriate technology, economics and other factors. The recovery factor is an estimate of the proportion of the total gas resource that might be extracted, and it is generally expressed as a percentage. Recently, the Parliamentary Office of S
	To some extent our ability to obtain reserve or resource figures in any hydrocarbon province is determined by the stage of exploration and the degree of production uncertainty. Gas in-place (GIP), original gas in-place (OGIP) or gas initially in-place (GIIP) are all the same estimate and these figures 
	5 © DECC 2013 
	are normally derived early in an exploration phase perhaps even before drilling takes place, for the benefit of shareholders and investors. These speculative values often find their way into the media. When substantive data from drilling and production rates become available, more reliable figures for reserves and resources can be estimated. But if only a few wells are drilled, there is a risk that the data they reveal may not be representative of large undrilled areas. A large variability in shale gas well
	A third measure of the amount of gas is the concept of ‘technically recoverable resources’ (TRR) which the US Geological Survey (e.g. Charpentier & Cook 2011) use to estimate how much gas is likely to be extracted. The USGS methodology was modified for coalbed methane and shale gas and oil to use well production information (estimated ultimate recovery and well spacing) to better constrain estimates of recoverable volumes compared with their previous recovery factor based methodology used for conventional o
	In the US, the SPE Petroleum Resource Management System nomenclature (Figure 4, SPE 2007) defines total petroleum initially-in-place as that quantity of petroleum that is estimated to exist in naturally occurring accumulations. It includes that quantity of petroleum that is estimated, as of a given date, to be contained in known accumulations prior to production plus those estimated quantities in accumulations yet to be discovered (equivalent to ‘total resources’) and goes on to describe ‘contingent resourc
	Figure
	Figure 4. The Society of Petroleum Engineers’ framework for petroleum resource classification (SPE 2007). 
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	For the Bowland-Hodder shale, a number of hurdles must be overcome to economically produce gas. A way to describe the current state of understanding is illustrated by the diagram presented by the IEA (2011) (Figure 4a) which indicates five factors determining the viability of commercial development, or reserves. This report addresses only the resource size, the first stage of this process. 
	Figure
	Figure 4a. Factors determining the viability of natural gas developments (IEA 2011). 
	2.3. Shale as a source and reservoir rock 
	In conventional oil and gas accumulations, shales comprise the source rock from which hydrocarbons are generated following burial. Through geological time, these hydrocarbons migrate from the source rock, through carrier beds and ultimately accumulate in porous reservoirs (typically sandstone or carbonate) in discrete traps. These traps are typically located in structural highs on the margins of the basin centres. 
	In the case of unconventional hydrocarbon accumulations (such as shale gas), this perceived wisdom is turned on its head – with shales acting as both source and reservoir rock, and the extensive basin centres becoming the exploration targets. Also, it is only within the last few decades that technology has enabled shale gas reservoirs to be exploited more economically. 
	Exploration for shale gas presents a series of new challenges; not least the collection of a different suite of geological, petrophysical and geotechnical data across previously little understood and poorly studied parts of hydrocarbon provinces. 
	7 © DECC 2013 
	In shale gas plays, biogenicor thermogenic gas is present as two components: either adsorbed onto kerogen or clay particles, or present as free gas in pore spaces and natural fractures. 
	3 
	3 


	Shale is predominantly comprised of very fine-grained clay particles deposited in a thinly laminated texture, but shale gas production may also come from layers of re-deposited limestone or thin clastic beds within the gross shale sequence. The clay particles fall out of suspension and become interspersed with organic matter, which is measured as the rock’s total organic carbon content (TOC). Through deep burial these muddy strata are compacted, and the pore water is expelled, resulting in a low-permeabilit
	Matrix permeabilities (the ability of fluids to pass through them) of typical shale are very low compared to conventional oil and gas reservoirs (<0.1 mD in shales versus >1 mD in conventional reservoir sandstones) which means that, in shale, hydrocarbons are effectively trapped and unable to flow or be extracted under normal circumstances, and they are usually only able to migrate to conventional traps over geological time. 
	2.4. What defines a shale gas play? 
	Table 2 summarises some of the most important geological, geochemical and geotechnical criteria that are widely used to define a successful shale gas play; some criteria are essential, others are desirable. The criteria are based on data from analogous shale gas plays in the USA, which are known to vary considerably from one another. 
	Criteria 
	Criteria 
	Criteria 
	Range of data and definitions 
	UK data (availability and gaps) and definitions used in this report 

	Organic matter content (TOC) 
	Organic matter content (TOC) 
	Shales should be rich in organic matter, with total organic carbon (TOC) values > 2% (TNO 2009, Charpentier & Cook 2011, Gilman & Robinson 2011). >4% (Lewis et al. 2004). Jarvie (2012) uses a cut-off of just 1% present-day TOC, and quotes averages for the 10 top US systems as 0.93-5.34% TOC. 
	Some legacy data available, augmented by data from a study commissioned by DECC (Appendix B). A cut-off of TOC > 2% is used for a potentially viable shale gas resource. 

	Gamma-ray values 
	Gamma-ray values 
	High gamma radiation is typically an indication of high organic carbon content. Gamma log response should preferably be ‘high’ (Charpentier & Cook 2011); 20 API above shale baseline (Schmoker 1980); >230 API (NPC 1980); >180 API (DECC 2010a); >150 API, but lower if TOC is demonstrably high (D. Gautier, USGS, pers. comm.). 
	The cut-off used has been selected on a well-by-well basis taking into account TOC and background shale gamma-log values, but is typically in the range 150 to 200 API. 


	Natural gas can be created by two mechanisms: biogenic and thermogenic. Biogenic gas is created by micro-organisms that produce methane as a metabolic by-product in anoxic conditions such as in marshes, bogs, landfills, and shallow sediments. At depth, at greater temperature and pressure, thermogenic gas is created through the maturation of buried organic material. Biogenic gas can be encountered even if the underlying source rocks have not entered the thermogenic gas generation window. 
	3 
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	Criteria 
	Criteria 
	Criteria 
	Range of data and definitions 
	UK data (availability and gaps) and definitions used in this report 

	Kerogen type 
	Kerogen type 
	Kerogen should be of Type I, II or IIS (Charpentier & Cook 2011). Ideally, II (Jarvie 2012). This indicates a planktonic, marine origin. 
	Information on kerogen type is incomplete. Ewbank et al. (1993) identify Type II and III kerogen in various basins. Note: immature Type II kerogen can plot in the Type III field when matured for gas generation (Jarvie et al. 2005). 

	Original hydrogen index (HIo) 
	Original hydrogen index (HIo) 
	HIo preferably >250 mg/g (TNO, 2009, Charpentier & Cook 2011); 250-800 mg/g (Jarvie 2012). Note: it is important to have information on original, rather than present day, HI values. This conversion relies heavily on kerogen type. 
	Only present day HI values are available for UK basins. 

	Mineralogy/clay content 
	Mineralogy/clay content 
	Clay content should be low (< 35%) to facilitate fracking and hence gas extraction. Jarvie (2012) stresses the requirement of a significant silica content (>30%) with some carbonate, and presence of non-swelling clays. 
	USEIA (2011a) quote ‘medium/high’ clay contents. There is scope for further work to bring together data from disparate sources and for new analyses. 

	Net shale thickness 
	Net shale thickness 
	Moderate shale thicknesses are considered ideal; >50 ft (15 m) (Charpentier & Cook 2011); >20 m (TNO 2009); >150 ft (Jarvie 2012). Conventional wisdom is that the ‘thicker the better’, but this may not necessarily be the case (Gilman & Robinson 2011); >25 m in <200 m gross section (Bent 2012). Thick shale sequences (100s of metres) tend to be regarded as ‘basin centre gas’ plays rather than shale gas plays. 
	Net potentially productive shale in the upper Bowland-Hodder unit is 200-3000 ft (60-900 m) thick; the lower Bowland-Hodder unit is up to 10,000 ft (3000 m thick) (with the possibility of thin units of higher-than-background TOC). These latter thicknesses are much greater than in the US analogues. 

	Shale oil precursor 
	Shale oil precursor 
	A shale oil precursor should ideally be identified. 
	Oil and gas fields sourced from the Bowland-Hodder unit are both present in central Britain. 

	Thermally maturity 
	Thermally maturity 
	The shale should be mature for gas generation; Ro = 1.1 – 3.5% is widely accepted as the ‘gas window’. Charpentier & Cook (2011) use a cuff-off of Ro >1.1%. Smith et al. (2010) use 1.1% as it demarcates the prospective area in the Fort Worth Basin; Jarvie (2012) quotes a higher cut-off of Ro >1.4%; 1.2 – 3.5% (BGR 2012); <3.3% (TNO 2009). Conventional wisdom is 1.25 – 2%, but ‘empirical wisdom’ is 1.75 – 3% (Gilman & Robinson 2011). 
	In this study, the shale is considered to be mature for gas generation above an Ro value of 1.1%. 

	Gas content/saturation 
	Gas content/saturation 
	Gas should be present as free gas (in matrix and fractures) and adsorbed gas. Gas contents should be 60-200 bcf/section (Bent 2012) or >100 bcf/section (Jarvie 2012). 
	There is no published information on gas contents. Data from US analogues has been used. 

	Depth minimum 
	Depth minimum 
	Depth >5000 ft (>1500 m) (Charpentier & Cook 2011). Lower pressures generally encountered at shallower depths result in low flow rates. 
	Shale resources shallower than 5000 ft (1500 m) below land surface have been excluded from this study. 

	Shale porosity 
	Shale porosity 
	Typically 4-7%, but should be less than 15% (Jarvie 2012). 
	Not known. 

	Overpressure 
	Overpressure 
	Slightly to highly overpressured (Charpentier & Cook 2011, Jarvie 2012). The Barnett Shale is slightly overpressured (Frantz et al. 2005). 
	Not known, but Smith et al. (2010) mention ‘the lack of overpressure’ in the Bowland Shale. However, recently-uplifted shales in central England should in theory be mildly overpressured. In resource calculations the pressure is assumed to be hydrostatic to give a conservative estimate of gas in place. 

	Tectonics and burial history 
	Tectonics and burial history 
	Preferably in large, stable basins, without complex tectonics (Charpentier & Cook 2011). Wells should be drilled away from faults where possible. 
	Britain is located at the junction of several structural terrains and has undergone a complex geological history; the basins are also generally small. Locally, faulting occurs at high densities. 


	Table 2. Criteria that are widely used to define a successful shale gas play. 
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	2.5. Shale gas around the world 
	Figure
	Figure 5. Estimates of technically recoverable shale gas resources (tcf) for selected shale formations in 32 countries (USEIA 2011a; Bickle et al. 2012). Note: data were not available for Russia, Central Asia, Middle East, South-east Asia and central Africa. The figure of 20 tcf for the UK includes 19 tcf for the Bowland Shale and 1 tcf for the Liassic shales of the Weald Basin. 
	The distribution of potential shale gas plays covers the globe (Figure 5), but it is only within North America that large-scale commercial extraction has been achieved to date. In the USA, ten shale gas plays hold the vast majority of the country’s technically recoverable reserves, and these are the only shale gas plays currently being exploited (USEIA 2011b, Jarvie 2012). 
	2.6. How to estimate how much gas? 
	Two fundamentally different methodologies are used to assess shale gas basins worldwide: 
	1.
	1.
	1.
	 In-place resource estimates based on a geological model, volumetrics and gas contents (‘bottomup approach’, as used by TNO and BGR), and 
	-


	2.
	2.
	 Technically recoverable resource estimates based on well technology, well performance, well density (‘top-down approach’, as used by the USGS). 


	In-place estimates with a robust connection to geological studies are widely considered an excellent tool for initial estimates, and BGS/DECC have employed this methodology. TNO (2009) and BGR (2012) also used this approach to make their preliminary assessments of shale gas resources in the Netherlands and Germany. While the second approach has been shown to be more reliable based on the US experience, no shale gas production data are yet available in the UK. 
	USEIA (2011a) subsequently de-risked their equivalent gas in-place figure by a factor that ‘account[s] for the current level of knowledge of the resource and the capability of the technology to eventually tap into the resource’. This approach is not followed here because of the relative infancy of the UK shale gas industry. 
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	3. Estimating the total in-place gas resource of the Bowland-Hodder unit in central Britain 
	3.1. Introduction 
	Carboniferous organic-rich basinal marine shales are present across a large part of central Britain and the study area extends from Merseyside to Humberside and Loughborough to Pickering (Figure 6). The shales are either buried at depth or occur at outcrop. These organic-rich shales are recognised to be excellent source rocks, in which oil and gas matured before some of it migrated into conventional oil and gas fields (e.g. UK Midlands area, East Irish Sea) (DECC 2010b). The Bowland shale gas study area is 
	Figure
	Figure 6. Location of the BGS/DECC shale gas study area, central Britain. Contains Ordnance Survey data © Crown copyright and database right 2013. 
	3.2. Seismic, well and outcrop data 
	This assessment of the Carboniferous basin shales of central Britain is based upon detailed seismic mapping using all available hydrocarbon well and stratigraphic borehole information along with outcrop geology. 
	Although several thousand wells and boreholes have been drilled within the assessment area, only 64 of these reached sufficient depths to record more than 50 ft (15 m) of net shale in the Early 
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	Carboniferous section (Figure 7). Very few wells have drilled more than 1000 feet (300 m) of the section of interest. Key wells are discussed further in Section 3.6. 
	Figure
	Figure 7. Location of key wells, non-released wells and other wells providing important stratigraphic information used to assess the shale gas potential of central Britain. See Appendix C for details of well name abbreviations and stratigraphic information. 
	All of the available seismic data was obtained from the UK Onshore Geophysical Library (UKOGL ). A total of c. 23,500 km (14,700 miles) of 2D and 1000 km² (390 mile²) of 3D seismic data (Figure 8) was loaded on an interpretive workstation. This mixed vintage data is of variable quality and often short line lengths (because seismic data onshore UK can only be shot over extant licences). An iterative approach was employed, finding seismic lines with the good evidence for horizon mapping, then circling back th
	www.ukogl.org.uk
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	Figure
	Figure 8. Location of 2D seismic profiles and 3D surveys used to assess the shale gas potential of central Britain. 
	The Bowland-Hodder shales (of the Craven Group, see section 3.4) are at outcrop in the Lancashire Forest of Bowland, Derbyshire Peak District, North Wales, at Gleaston (Cumbria) and a small area near Harrogate (Figure 9). These outcrops fringe areas where post-Carboniferous uplift has brought older rocks to the surface (e.g. the Derbyshire Dome and the Clitheroe and Slaidburn anticlines). These have been mapped by the BGS over a period of c.150 years and a large amount of literature has been published, but 
	Lee (1991) and others have interpreted the regional gravity and magnetic data (Figures 11 and 12). In the northern half of the area, gravity lows correlate more closely with known rift basins, such as the Widmerpool and Edale gulfs and the Gainsborough Trough (GL7, GL8 and GL9 respectively). Anomaly GL 10, however, is thought to be related to the postulated concealed Market Weighton Granite adjacent to the lineaments associated with known basement highs, such as the Nocton and Askern-Spital highs, and ESE-t
	Although the shales are widely distributed, their outcrops are not extensive and occur mainly in river and road cuttings (Figure 13). 
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	Figure
	Figure 9. The five main Craven Group outcrops in central Britain (from BGS 1:50,000 mapping). DD = Derbyshire Dome; CA = Clitheroe Anticline; SA = Slaidburn Anticline. 
	Figure
	Figure 10. Location of relevant BGS map sheets and memoirs across central Britain. See references for further details. 
	Figure 10. Location of relevant BGS map sheets and memoirs across central Britain. See references for further details. 
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	Figure
	Figure 11. Bouguer gravity anomaly map for central Britain (from BGS mapping). Gravity low (GL) numbering from Lee et al. (1991). The Early Carboniferous structural framework lines are from Figure 14. 
	Figure 11. Bouguer gravity anomaly map for central Britain (from BGS mapping). Gravity low (GL) numbering from Lee et al. (1991). The Early Carboniferous structural framework lines are from Figure 14. 


	Figure
	Figure 12. Magnetic anomaly map for central Britain (from BGS mapping). The Early Carboniferous structural framework lines are from Figure 14. 
	Figure 12. Magnetic anomaly map for central Britain (from BGS mapping). The Early Carboniferous structural framework lines are from Figure 14. 
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	Figure
	Figure 13. Typical outcrop of shale showing a slope deposit comprising imbricated rafted blocks of Hodder Mudstone Formation (Arundian age) on the flank of Ashnott High, Bowland Basin, Lancashire. © N.J. Riley/BGS 
	Figure 13. Typical outcrop of shale showing a slope deposit comprising imbricated rafted blocks of Hodder Mudstone Formation (Arundian age) on the flank of Ashnott High, Bowland Basin, Lancashire. © N.J. Riley/BGS 


	3.3. Paleogeography and basin inversion 
	Palaeomagnetic evidence suggests that Britain was situated in near-equatorial latitudes during Visean times, and the Carboniferous was a period of glacial eustasy, with sea-level fluctuations likely to have had a significant impact on deposition. Marine shales were deposited in a complex series of tectonically active basins across central Britain during the Visean and Namurian. A phase of Late Devonian to Early Carboniferous rifting produced a marked palaeo-relief with numerous basins occupying subsiding gr
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	The Early Carboniferous basin model has become increasingly well defined, with supporting evidence coming from both the interpretation of seismic data and well penetrations (e.g. Kent 1966, Leeder 1982, 1988, Smith et al. 1985, Fraser et al. 1990, Fraser & Gawthorpe 1990, 2003). The exceptions are the basin beneath the Permo-Triassic Cheshire Basinwhere the thickness is unconstrained and in the Humber Basin, where the interpretation is tenuous due to the lack of well penetrations and poor seismic control (F
	4 
	4 


	Figure
	Figure 14. The Early Carboniferous basins and platforms of central Britain (modified after Fraser et al. 1990, Kirby et al. 2000). CLH = Central Lancashire High; HH = Holme High. Note: the presence of Early Carboniferous basins beneath the Permo-Triassic Cheshire Basin (Smith et al. 2005 cf. Waters et al. 2009) and a putative Humber Basin (Kent 1966, Hodge 2003) are both debatable (see text). 
	Figure 14. The Early Carboniferous basins and platforms of central Britain (modified after Fraser et al. 1990, Kirby et al. 2000). CLH = Central Lancashire High; HH = Holme High. Note: the presence of Early Carboniferous basins beneath the Permo-Triassic Cheshire Basin (Smith et al. 2005 cf. Waters et al. 2009) and a putative Humber Basin (Kent 1966, Hodge 2003) are both debatable (see text). 


	The Blacon East 1 and Milton Green 1 wells in the Blacon Basin penetrate basinal facies of late Visean, Brigantian age (Smith et al. 2005) and Davies et al. (2004) indicate basinal facies extending south as far as the Dee Estuary and Wirral. There are no well data further east and the seismic data is of insufficient quality to provide evidence for the thickness of the unit. Smith et al. (2005, Fig. 27) show that deep-water sediments with limestone turbidites were deposited across the Cheshire Basin area dur
	The Humber Basin was first mentioned by Kent (1966) and is shown by Fraser & Gawthorpe (2003) and Hodge (2003). There are no well or seismic data to support this suggestion. Seismic interpretation reveals the presence of a Namurian-Westphalian thickening in the vicinity of the Tetney Lock 1 well. It could be interpolated that the Visean exhibits similar depositional thickening in this area, but importantly there is no evidence from the seismic data for a large-scale Visean halfgraben (although seismic data 
	-

	The Bowland Basinis one of the largest basins in the assessment area (Figure 14), and it continues westwards beneath the Irish Sea. Near the coast the Bowland Basin is buried beneath a layer of thick Permo-Triassic rocks, whilst farther east, the centre of the same basin has been uplifted and eroded such that rocks of the Bowland-Hodder unit crop out at the surface. The Edale Basin is a fault-bounded structure (Gutteridge 1991) that has a preserved cover of Millstone Grit and a relatively thin overlying uni
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	Late Carboniferous uplift occurred in a number of phases across central Britain, associated with the Variscan orogeny. The areas of greatest uplift largely followed the axis of the earlier depocentres, so that, for example, the oldest basinal strata of the Bowland-Hodder unit are exhumed in the centre of the inversion axis in the Bowland Basin. 
	3.4. Stratigraphy 
	Historically, the Early Carboniferous organic-rich basin shales have been given many names (e.g. Bowland Shale, Hodder Mudstone, Worston Shales, Widmerpool Formation, Sabden Shale, Caton Shale, Long Eaton Formation, Edale Shales, Lask Edge Shales and Holywell Shales etc.), and all of these shale units are now encompassed within the Craven Group (Waters et al. 2009) (Figure 15). 
	The interval mapped in this study is of Visean to early Namurian age, and has been interpreted on the seismic data in terms of sequence boundaries, and therefore includes both shales and laterally-equivalent platform limestones (Figures 15 and 16). The non-prospective platform deposits were subsequently excluded from the model using estimated net shale mapping (see Section 3.7). 
	In this study, this interval of interest is informally termed the ‘Bowland-Hodder unit’ (Figures 15 and 
	16) since this is the key stratigraphic interval within the Bowland Basin that was targeted by the Preese Hall 1 well in western Lancashire (Figure 7), the UK’s first shale gas exploration well. 
	The age of the Bowland-Hodder unit extends from the late Chadian to the Pendleian (and locally Arnsbergian), within the Visean and Namurian epochs. 
	Figure
	Figure 15. Lithostratigraphical framework of the Bowland-Hodder unit in central Britain (after Waters et al. 2009). Note: away from the outcrops, the platform carbonates in the Wessenden 1 and Roddlesworth 1 boreholes are termed Holme High Group and Trawden Group respectively (Waters et al. 2011). No formal lithostratigraphic framework has yet been applied to strata in the subsurface Cleveland Basin. In pre-2009 terminology, the Craven Group equates to the combined Worston Shale and Bowland Shale groups, ex
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	The base of the Bowland-Hodder unit is defined in the basins as the top of the ‘EC2/Chadian’ carbonates identified in the Widmerpool Trough (Fraser et al. 1990). Outside this half-graben, it has only been penetrated on the highs and platforms. In the Cleveland Basin, the Kirby Misperton 1 well terminated in a sandstone (termed the ‘Fell Sandstone’ on the company log), the top of which is taken to approximately equate to the base of the Bowland-Hodder unit. The overlying shales have been only imprecisely dat
	The top of the Bowland-Hodder unit corresponds to the base of the sandstone-dominated Millstone Grit sequences. In outcrop, the Bowland Shale – Pendle Grit (oldest Millstone Grit unit) boundary is gradational and rather arbitrary, being part of an upward-coarsening sequence (Brandon et al. 1998). It is taken at either the base of the first massive sandstone, or where the sandstones predominate over siltstones and mudstones. This transition is younger in the north, due to the progradation of deltaic sequence
	It should be noted that younger potential shale gas units, such as the Arnsbergian-Kinderscoutian Sabden Shale in Lancashire and much of the ‘Holywell shales’ in North Wales, which occur within Millstone Grit sandstone sequences, are excluded from this study (Figure 6). The Sabden Shale reaches a thickness of 1300 ft (400 m) in the Ribchester Syncline (Aitkenhead et al. 1992) and 2000 ft (610 m) south-east of Clitheroe (Earp et al. 1961), but it is not sufficiently deeply buried onshore to be considered as 
	Older ‘limestone-with-shales’ of Courceyan age are also excluded from the Bowland-Hodder unit, and these represent the deposits of the initial phase of rifting within the basin. These include the Haw Bank Limestone-with-Shales (Hudson 1944, Arthurton et al. 1988), the Gisburn Cotes Beds (Earp et al. 1961) and 2156 ft (657 m) of undated muddy limestones in the Swinden 1 borehole (Charsley 1984). They may reach a thickness in excess of 10,000 ft (3000 m) based on geophysical modelling (Arthurton et al. 1988).
	The integration of outcrop, well and seismic data has shown that the Bowland-Hodder unit can be divided into lower and upper parts (Figure 16). These correspond respectively to the EC3-EC6 syn-rift sequences and part of the LC1 post-rift sequence of Fraser et al. (1990). This subdivision provides a useful framework for the breakdown of the resource estimation into the less understood (and higher risk) lower unit and the better well-controlled (and lower risk) upper unit (see Section 5). It should be noted t
	-
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	Figure
	Figure 16. Schematic diagram showing the relationship between hemipelagic basinal shales and platform carbonates within the Bowland-Hodder unit. Note that basin shales also occur interbedded with the sandstones of the overlying Millstone Grit. 
	Figure 16. Schematic diagram showing the relationship between hemipelagic basinal shales and platform carbonates within the Bowland-Hodder unit. Note that basin shales also occur interbedded with the sandstones of the overlying Millstone Grit. 


	The lower part of the Bowland-Hodder unit comprises a thick, syn-rift, shale-dominated facies which passes laterally to age-equivalent limestones that were deposited over the adjacent highs and platforms (Figure 16). The presence of slumps, debris flows and gravity slides (Gawthorpe & Clemmey 1985, Riley 1990) are evidence for relatively steep slopes, which may have been the result of instability induced by tectonic activity. A combination of syn-depositional tectonics, fluctuating sea levels, climate chang
	There is some evidence that marine transgressions, represented by high gamma, high TOC intervals, also occasionally flooded the platform highs (e.g. Arundian shales in the Plungar 8A well). However, there is so little well control for the lower unit in the deep basins, that it is unclear how regionally correlative these intervals are. 
	The upper part of the Bowland-Hodder unit comprises basinal shales that were deposited both in the basins and across most of the platforms, following the drowning of the highs. These condensed zones are laterally continuous, rather than enclosed within basins, but are considerably thicker and richer in organic material within the basins which had a stratified water column. Within the Bowland Basin, individual beds can be easily correlated between (currently unreleased) wells, providing further evidence of r
	Evidence as to whether the onset of high-gamma shale deposition is always coincident with the Visean-Namurian boundary (Emstites leion Marine Band) requires further research. In most cases, there is a good correlation between these boundaries. However, in several wells, Brigantian ages have been assigned to the lowest part of the upper unit. 
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	In the Harrogate outcrop (Cooper & Burgess 1993) and wells in the Cleveland Basin (this study), the boundary between the lower and upper parts of the Bowland-Hodder unit (and the top of the Visean) is taken near the base of the Harrogate Roadstone (of the Pendleton Formation). 
	Biostratigraphic control will be particularly important in interpreting the depositional controls on shale gas prospectivity and obtaining a terminal core to constrain the maximum stratigraphical penetration is most desirable. Cores of shale over zones of interest can be used not only for gas desorption tests and analysis, but also to gain the high resolution stratigraphical knowledge and geophysical log/seismic calibration necessary to inform subsequent exploration and development 
	(e.g. prediction of shale net to gross, lithological and diagenetic controls on shale characterisation, lateral distribution of most productive zones and identify faults and their displacement). 
	3.5. Regional depth and isopach maps 
	The top of the Bowland-Hodder unit lies at depths of up to 16,000 ft (4750 m) across the assessment area (Figure 17), with the greatest depth of burial occurring in the Bowland Basin of Lancashire, beneath the Permo-Triassic Cheshire Basin and in eastern Humberside. 
	The thickness of the Bowland-Hodder unit (Figure 18) mirrors the regional Early Carboniferous structural configuration (Figure 14), with greatly expanded sections in the syn-rift basins. 
	From outcrop data, the Bowland Basin is estimated to contain up to 880 ft (268 m) of Bowland Shale (Brandon et al. 1998) and 3000 ft (900 m) of Hodder Mudstone (Riley 1990). In the subsurface, seismic interpretation suggests the complete Bowland-Hodder unit reaches a thickness of up to 6300 ft (1900 m) (Figure 18) in the same basin. This may be a conservative approximation, as Kirby et al. (2000) and Aitkenhead et al. (2002) estimated Tournaisian-Visean thicknesses of 13,000 ft (4000 m) and 8200 ft (2500 m)
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	Figure
	Figure 17. Depth (ft) to the top of the Bowland-Hodder unit, central Britain. The location of regional cross-sections is indicated (see Figure 19). 
	Figure 17. Depth (ft) to the top of the Bowland-Hodder unit, central Britain. The location of regional cross-sections is indicated (see Figure 19). 


	Figure
	Figure 18. Thickness (ft) of the Bowland-Hodder unit, central Britain. The interval was not mapped across the Derbyshire High where there are no seismic data (and the unit comprises platform carbonate rocks) (see Figure 19C & E). The location of example seismic profiles is indicated (see Figures 20-25). 
	Figure 18. Thickness (ft) of the Bowland-Hodder unit, central Britain. The interval was not mapped across the Derbyshire High where there are no seismic data (and the unit comprises platform carbonate rocks) (see Figure 19C & E). The location of example seismic profiles is indicated (see Figures 20-25). 
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	The Bowland-Hodder unit is equally thick, or thicker, within the narrow, fault-bounded Gainsborough, Edale and Widmerpool basins (Figure 18) with up to 10,000 ft (3000 m), 11,500 ft (3500 m) and 9500 ft (2900 m) respectively. The Cleveland Basin maintains a more uniform thickness, with the distribution of net shale controlled by facies changes to the north and south. Kirky Misperton 1 drilled a complete Bowland-Hodder unit thickness of 4598 ft (1401 m). 
	The organic-rich upper part of the Bowland-Hodder unit is typically up to c.500 ft (150 m) thick, but locally reaches 2900 ft (890 m). The syn-rift lower part of the Bowland-Hodder unit is considerably thicker, reaching 10,000 ft (3000 m) in the depocentres. 
	A selection of seismic-based depth cross-sections (Figure 19) and example seismic profiles (Figures 20-25) illustrate various aspects of the deep geology of the study area. Expanded captions provide additional information. 
	Figure
	Figure 19. Generalised depth cross-sections through the Bowland Basin, Cheshire Basin, Widmerpool Trough, Gainsborough Trough and Edale Basin. For location of the sections, see Figure 17. 
	Figure 19. Generalised depth cross-sections through the Bowland Basin, Cheshire Basin, Widmerpool Trough, Gainsborough Trough and Edale Basin. For location of the sections, see Figure 17. 
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	Figure
	Figure 20. Seismic example across the deepest-buried part of the Bowland Basin showing thickening of the Bowland-Hodder unit towards the basin depocentre. The Thistleton 1 well terminated in Brigantian-aged shales and sandstones and the lower Bowland-Hodder unit was not reached. However, the Hodder Mudstone Formation is at least 3000 ft (900 m) thick in the Plantation Farm Anticline outcrop section located 25 km ENE of Thistleton 1 (Riley 1990), and a section of similar thickness is expected to be present i
	Figure
	Figure 21. Seismic example across a folded and uplifted part of the Bowland Basin. The Pendle Line and associated monocline mark the southern boundary of the Bowland Basin; Westphalian Coal Measures crop out in the south-east. For location of the section, see Figure 18. 
	Figure 21. Seismic example across a folded and uplifted part of the Bowland Basin. The Pendle Line and associated monocline mark the southern boundary of the Bowland Basin; Westphalian Coal Measures crop out in the south-east. For location of the section, see Figure 18. 
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	Figure
	Figure 22. Seismic example across the Edale Basin where very thick basinal shales are interpreted. On the adjacent Derbyshire High, the Bowland-Hodder unit comprises platform carbonates topped by relatively thin upper Bowland-Hodder shales. For location of the section, see Figure 18. 
	Figure 22. Seismic example across the Edale Basin where very thick basinal shales are interpreted. On the adjacent Derbyshire High, the Bowland-Hodder unit comprises platform carbonates topped by relatively thin upper Bowland-Hodder shales. For location of the section, see Figure 18. 


	Figure
	Figure 23. Seismic example across the Gainsborough Trough. The Grove 3 well is located on the East Midlands Shelf and illustrates the platform limestone-dominated nature of the Bowland-Hodder unit that was deposited on an Early Carboniferous platform high area. For location of the section, see Figure 18. 
	Figure 23. Seismic example across the Gainsborough Trough. The Grove 3 well is located on the East Midlands Shelf and illustrates the platform limestone-dominated nature of the Bowland-Hodder unit that was deposited on an Early Carboniferous platform high area. For location of the section, see Figure 18. 
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	Figure
	Figure 24. Seismic example across the Widmerpool Trough, showing inversion of the basin depocentre and localised erosion of the upper part of the Bowland-Hodder unit beneath the base Permian unconformity. The Long Eaton 1 well penetrated 8028 ft (2447 m) of the Bowland-Hodder unit before reaching a limestone of possible Chadian age. For location of the section, see Figure 18. 
	Figure 24. Seismic example across the Widmerpool Trough, showing inversion of the basin depocentre and localised erosion of the upper part of the Bowland-Hodder unit beneath the base Permian unconformity. The Long Eaton 1 well penetrated 8028 ft (2447 m) of the Bowland-Hodder unit before reaching a limestone of possible Chadian age. For location of the section, see Figure 18. 


	Figure
	Figure 25. Seismic example across the Cleveland Basin, showing the presence of older wedging strata (of unknown age) beneath the Bowland-Hodder unit. The Kirby Misperton 1 well terminates in the ‘Fell Sandstone’, but the older part of the Bowland-Hodder unit is also sand-prone in this well. For location of the section, see Figure 18. 
	Figure 25. Seismic example across the Cleveland Basin, showing the presence of older wedging strata (of unknown age) beneath the Bowland-Hodder unit. The Kirby Misperton 1 well terminates in the ‘Fell Sandstone’, but the older part of the Bowland-Hodder unit is also sand-prone in this well. For location of the section, see Figure 18. 
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	3.6. Key wells 
	Of the many wells drilled within the assessment area, only 64 reached sufficient depths to record more than 50 ft (15 m) of net shale in the Early Carboniferous section (Figures 7, 26 and 28, Appendix C). 
	Few wells have penetrated the full Bowland-Hodder succession within the deep basins, but several have drilled sections of more than 5000 ft (1500 m). Detailed well correlations are included in Appendix D (Figure 26) and Figure 27 compares the sections encountered in some of the key wells and outcrops in the study. Note that most wells do not encounter the base of the unit, and only a few penetrate significantly into the lower Bowland-Hodder unit. 
	In addition to wells drilled under hydrocarbon legislation, there are a number boreholes drilled for mineral and geothermal investigation which are relevant to the understanding of the Bowland-Hodder shale play. For example, the BGS Duffield (Aitkenhead 1977) and Roosecote boreholes, the Cominco boreholes described by Arthurton et al. (1988), the BP minerals boreholes described by Aitkenhead et al. (1992) and Brandon et al. (1998) and the unpublished BGS Clitheroe geothermal borehole (SD 755 409). Note also
	enquiries@bgs.ac.uk 

	Dating and correlation of the Bowland-Hodder unit requires a multidisciplinary approach. Standard industry techniques such as palynology are of limited use due to the poor preservation of miospores in the hemipelagic marine shales and the broad stratigraphic range of the miospore zones. The highest resolution stratigraphy is provided by glacio-eustatic flooding surfaces. These form the backbone for all the marine event stratigraphy and biostratigraphic correlation through the Bowland-Hodder unit, particular
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	Figure
	Figure 26. Location of well correlation lines included in Appendix D. 
	Figure 26. Location of well correlation lines included in Appendix D. 


	Figure
	Figure 27. Geophysical well-log correlation of the upper Bowland-Hodder unit between Rempstone 1, Old Dalby 1 and Kinoulton 1 located in the Widmerpool Gulf (see Appendix D iv for the complete correlation diagram). The upper part of the Bowland-Hodder unit contains correlateable units. 
	Figure 27. Geophysical well-log correlation of the upper Bowland-Hodder unit between Rempstone 1, Old Dalby 1 and Kinoulton 1 located in the Widmerpool Gulf (see Appendix D iv for the complete correlation diagram). The upper part of the Bowland-Hodder unit contains correlateable units. 
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	Figure
	Figure 28. Craven Group basinal shale sections recorded from wells and outcrops, central Britain. At the Clitheroe and Plantation Farm anticlines, the outcrop section has been measured along the ground. In the wells, only the part drilled down from just above the top of the Bowland-Hodder unit is shown. See Figure 26 for the location of the wells and outcrop localities. The estimated thickness of the unit which remains undrilled below the terminal depth of each well is also indicated; this is based on seism
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	3.7. Regional distribution of shale 
	The mapping of the Bowland-Hodder interval as a seismically defined unit necessitated the use of a sequence stratigraphic approach. As a result, the mapped unit is constrained by time lines, between which there are a variety of basinal and platform facies. To ensure that the 3D volume model used to calculate the potential amount of gas in-place within the Bowland-Hodder unit only included shale lithologies (and not the platform limestones, nor sandstones and limestone turbidites within the basins), it was n
	Figure
	Figure 29. Predicted shale percentages within the lower part of the Bowland-Hodder seismic unit used to condition the 3D volume during the calculation of in-place gas resources. 
	Figure 29. Predicted shale percentages within the lower part of the Bowland-Hodder seismic unit used to condition the 3D volume during the calculation of in-place gas resources. 


	3.8. Geochemical evaluation 
	Many central Britain outcrop, core and cuttings samples of Visean and Namurian shales have undergone geochemical analysis, mainly when studying source rocks in conventional petroleum systems. Relatively little analysis has specifically targeted its shale gas plays. 
	Data from 161 well and outcrop locations (3420 samples) were available to this study. Many reports are available through the general release of hydrocarbon well data from DECC’s data release agents. Data has also been extracted from Petra-Chem (1983a, b, c) and RRI (1987). Rock-Eval analysis of an additional 109 core samples was commissioned as part of this study (Appendix B). Confidential data available to DECC was integrated into the study, but it is not published in this report. Under UK 
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	onshore licence terms, well data is held confidential for four or five years before it can be released into the public domain by DECC’s release agents. 
	Geochemical data were also available from strata higher in the Carboniferous succession, and these have proved useful in determining maturation trends with depth and burial history. 
	Organic carbon content 
	There are only limited published data on organic carbon contents in the Bowland-Hodder unit (DECC 2010a, Smith et al. 2010). These published data suggest that Namurian marine shales have generally higher TOC values (average 4.5%) compared to non-marine shales, which have an average value of 2.7% (Spears & Amin 1981). Maynard et al. (1991) found that two thin Namurian black shale marine bands have a TOC of between 10 and 13%, whereas values within interbedded strata ranged between 2 and 3%. The Namurian Holy
	Figure
	Figure 30. Summary of total organic carbon analyses from the Bowland-Hodder unit in central Britain. There are seven data points with TOC >8%. Some data may be from adjacent horizons and some non-shale lithologies are included. 
	Figure 30. Summary of total organic carbon analyses from the Bowland-Hodder unit in central Britain. There are seven data points with TOC >8%. Some data may be from adjacent horizons and some non-shale lithologies are included. 


	A review of all available total organic carbon data from the Bowland-Hodder unit in central Britain is summarised in Figure 30. Most samples are from the upper part of the Bowland-Hodder unit. Values fall in the range >0.2 to 8%, with most shale samples in the range 1-3% TOC. Smith et al. (2010) give 
	32 © DECC 2013 
	a similar range up to 10%. The results of the new Rock-Eval analyses commissioned as part of this study (shown in red on Figure 30 and listed in full in Appendix B) mirror this conclusion. 
	For comparison, USEIA (2011a) quote an ‘average TOC’ for the Bowland shale play of 5.8%. 
	The down-hole gamma-log response is generally considered to be a good proxy for organic carbon content where geochemical analyses are lacking. TOCs in excess of 1-3% typically correlate with gamma log values of greater than 150 API. 
	The gamma-log responses of the shales within the upper Bowland-Hodder unit indicate significant intervals having >2% TOC (see well correlations in Appendix D). 
	While there are some data for the lower Bowland-Hodder unit, the well penetrations are mostly within the uppermost 100 feet, so few wells sample the full expanded section in the narrow rifted basins. The exceptions indicate consistently high TOC values in the Widmerpool Gulf, with average TOCs of 3.5%, 4.9% and 5% over sampled intervals in Old Dalby 1, Ratcliffe-on-Soar 1 and Rempstone 1 respectively (Appendix B). There are no analysed samples from the lower unit in the Gainsborough Trough. 
	The observed range of TOC values in the Bowland-Hodder unit (average 1-3%, maximum 8%) is comparable to many of the producing North American shale-gas analogues (Table 3). 
	Formation 
	Formation 
	Formation 
	Age 
	HIo (mg/g) 
	TOCpd Low (wt. %) 
	TOCpd High (wt. %) 
	TOCpd Average (wt. %) 

	Barnett 
	Barnett 
	Early Carboniferous 
	434 
	0.02 
	9.94 
	3.74 

	Fayetteville 
	Fayetteville 
	Early Carboniferous 
	404 
	0.71 
	7.13 
	3.77 

	Woodford 
	Woodford 
	Devonian 
	503 
	0.26 
	11.27 
	5.34 

	Bossier 
	Bossier 
	Late Jurassic 
	419 
	0.46 
	4.11 
	1.64 

	Haynesville 
	Haynesville 
	Late Jurassic 
	722 
	0.23 
	6.69 
	3.01 

	Marcellus 
	Marcellus 
	Devonian 
	507 
	0.41 
	9.58 
	4.67 

	Muskwa 
	Muskwa 
	Devonian 
	532 
	0.01 
	5.97 
	2.16 

	Montney 
	Montney 
	Triassic 
	354 
	0.01 
	4.78 
	1.95 

	Utica 
	Utica 
	Ordovician 
	379 
	0.19 
	3.06 
	1.33 

	Eagle Ford 
	Eagle Ford 
	Late Cretaceous 
	411 
	0.58 
	5.6 
	2.76 


	pd) for the top 10 shale gas plays in North America (Jarvie 2012). 
	Table 3. Comparison of present-day total organic carbon contents (TOC

	Kerogen type 
	Four basic categories of kerogen are recognised in organic matter (Tissot et al. 1974). Type I and II kerogens have the potential to generate both oil and gas. Type III kerogens mainly generate gas, with only a small amount of oil, while Type IV kerogens have little or no remaining potential to generate hydrocarbons. 
	The type of kerogen present is also an indication of the environment in which the interval was deposited. Algae seen in Type I samples indicate a lacustrine (or marine environment), whereas Type II is deposited exclusively in marine conditions and contains plant spores, exines, resins and bacterially degraded algal matter. During initial maturation, Type II source rocks generate mainly oil and only a limited amount of gas. As maturation proceeds through higher temperatures, secondary cracking in these sourc
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	shelf. Type IV contains inertinite, where oxidation of woody material has occurred, either before it is deposited or in situ. 
	Ewbank et al. (1993) reported Type II kerogen in the Widmerpool Gulf, Edale Basin, Goyt Trough and mudstones interbedded with carbonates on the Derbyshire High; Type III was also present. However, little additional data are available to establish the original composition of the kerogen in the Bowland-Hodder unit. The identification of kerogen type using geochemical cross-plots is complicated by the fact that various ratios can reduce during the maturation process (Jarvie et al. 2005, 2008). A significant nu
	Figure
	Figure 31. Remaining hydrocarbon potential (S2) versus TOC plot for (a) the Barnett Shale (from Jarvie 2008) and (b) all available data from this study. There are close similarities, although the larger range of TOCs in the Barnett Shale is evident. 
	Figure 31. Remaining hydrocarbon potential (S2) versus TOC plot for (a) the Barnett Shale (from Jarvie 2008) and (b) all available data from this study. There are close similarities, although the larger range of TOCs in the Barnett Shale is evident. 
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	Further data relevant to kerogen typing and maturation are shown in Figures 32 and 33. 
	Figure
	Figure 32. Modified van Krevelen diagram (HI versus OI plot) for all available data from this study. A significant number of samples fall in the Type II field. 
	Figure 32. Modified van Krevelen diagram (HI versus OI plot) for all available data from this study. A significant number of samples fall in the Type II field. 


	Figure
	max plot for all available data from this study. 
	max plot for all available data from this study. 
	Figure 33. Hydrogen Index versus T
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	Thermal maturity and uplift 
	Figure
	Figure 34. Relationship between temperature, vitrinite reflectance of organic material and phases of hydrocarbon generation (modified from Tissot et al. 1974 and McCarthy et al. 2011). 
	Figure 34. Relationship between temperature, vitrinite reflectance of organic material and phases of hydrocarbon generation (modified from Tissot et al. 1974 and McCarthy et al. 2011). 


	The thermal generation of oil and gas from organic material (Figure 34) generally takes place at temperatures between 50°C and 225°C. At lower temperatures, the organic material is immature and no oil or gas will be thermally generated from the source rock; at much higher temperatures, the organic material is overmature and all possible oil and gas will have been generated. The timing of generation is dependent on the kerogen type and the exact composition of the organic material. 
	o) and measurements of the temperature of maximum release of S2 max) at outcrop and in boreholes provide a widely accepted proxy for thermal o can be calculated from Tmax using the following formula (Jarvie et al. 2001): 
	Vitrinite reflectance (R
	hydrocarbons (T
	maturity and extent of hydrocarbon generation. An equivalent to R

	Tmaxeq%Ro = 0.018(Tmax) – 7.16 [where Tmax is in °C] 
	From an analysis of all available maturity data of the Bowland-Hodder unit in the study area, it can o of 1.1% (equating to the onset of significant gas production) can be reached at a present-day depth of anything between outcrop and 9500 ft (2900 m) (Figure 35). This o vs. depth relationship is overprinted by the multiphase subsidence and inversion experienced across the study area. 
	be deduced that an R
	variability occurs because the simple R
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	Figure
	o and equivalent data calculated max) plotted against present-day sub-sea depth for the Bowland-Hodder unit (and some younger strata) across central Britain. The curve shows a conservative best-fit baseline (i.e. a minimal uplift baseline); data points lying well above the baseline are affected by the highest amounts of uplift. 
	o and equivalent data calculated max) plotted against present-day sub-sea depth for the Bowland-Hodder unit (and some younger strata) across central Britain. The curve shows a conservative best-fit baseline (i.e. a minimal uplift baseline); data points lying well above the baseline are affected by the highest amounts of uplift. 
	Figure 35. Chart showing all available vitrinite reflectance data (R
	from T



	In the absence of quantitative data on uplift, the data summarised in Figure 35 have been used to set a baseline with minimal uplift to subsequently obtain a best-guess estimate of uplift at well locations. Data points lying above the baseline are primarily affected by uplift, so by adjusting the o = 1.1% can be identified (Figure 36). 
	best-fit baseline curve to fit the data for a given well, the depth at which this curve intersects R

	Figure
	Figure 36. Chart showing the vitrinite reflectance data from Widmerpool 1. The baseline from Figure o is expected to reach 1.1% is 8600 ft, i.e. the top of the gas window lies at c.8600 ft at this well location. 
	Figure 36. Chart showing the vitrinite reflectance data from Widmerpool 1. The baseline from Figure o is expected to reach 1.1% is 8600 ft, i.e. the top of the gas window lies at c.8600 ft at this well location. 
	35 has been adjusted upwards to fit the spread of the data. The depth at which R
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	This approach is qualitative and should be treated with considerable caution, but it achieves some credence in its broad geographical conformance to other uplift models (e.g. Fraser et al. 1990, Kirby et al. 2000). At least two phases of uplift have been recognised: the first during the latest Carboniferous and early Permian (Variscan uplift) and the second during the Tertiary (Alpine uplift). 
	Appendix E contains details of a 1D and 2D basin modelling study, which includes uplift curves for wells and maturity models for 2D profiles. An example from the Kirk Smeaton 1 well is shown as Figure 37. 
	Figure
	Figure 37. 1-D basin model for the Kirk Smeaton 1 well taken from Appendix E. (top) shows the depositional history, (centre) shows the modelled palaeo-heat flow and (bottom) shows the modelled vitrinite reflectance (VR) maturity curve and raw VR data. 
	Figure 37. 1-D basin model for the Kirk Smeaton 1 well taken from Appendix E. (top) shows the depositional history, (centre) shows the modelled palaeo-heat flow and (bottom) shows the modelled vitrinite reflectance (VR) maturity curve and raw VR data. 
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	This procedure was carried out for all well and outcrop data and the resulting depths contoured to derive a depth surface to the top of the gas window throughout the study area (Figure 37). 
	Figure
	o = 1.1%), central Britain. Note: the shallowest colour includes areas where this isomaturity surface is above sea-level and also above the land surface. 
	o = 1.1%), central Britain. Note: the shallowest colour includes areas where this isomaturity surface is above sea-level and also above the land surface. 
	Figure 38. Estimated present-day depth (feet) to the top of the gas window (R
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	3.9. Calculating gas-mature shale volumes 
	The work flow used to estimate the in-place gas resource in this study is shown in Figure 39. This shows the processes (large arrow) as well as the data sources (in blue). Some data was not available from the study area, so data from US analogies was used. There is a significant range of uncertainty of the shale volume, and greater uncertainty in the range of free and adsorbed gas used to calculate the total in-place gas volume. No attempt was made to estimate the potential liquid resource, for which the th
	Figure
	Figure 39. Workflow used in this study to estimate the in-place shale gas resource. 
	Figure 39. Workflow used in this study to estimate the in-place shale gas resource. 


	The calculation of the net gas-mature shale volume in the study area used the following basic screening criteria: 
	Identification of potentially prospective shale gas units from well information 
	• 
	• 
	• 
	Mapping the top and base of units to enter into a 3D model 

	• 
	• 
	Mapping the shale component as a proportion of the seismically mapped unit 

	• 
	• 
	Minimum depth cut-off of 5000 ft (1500 m) below land surface 

	• 
	• 
	o > 1.1% (max cutoff of Ro > 3.5% never exceeded) 
	Minimum cut-off where R



	The volumes of shale in the upper and lower parts of the Bowland-Hodder unit were calculated using the following formula: 
	Net shale volume (m) = gross rock volume¹ (m) x proportion of shale 
	3
	3

	¹ below the depth where Ro = 1.1% or 5000 ft, whichever is the deeper. 
	The thermal maturity surface (Figure 38) was integrated with the depth structure mapping and shale proportion distribution (Figure 29) to calculate the volume of Bowland-Hodder shale in the gas window. Areas where the Bowland-Hodder shale is less than 5000 ft (1500 m) below the land 
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	surface were removed from the potentially prospective volume. North American experience has shown that there is not adequate pressure to economically produce shale gas at shallow depths (with the exception of the biogenic gas in the Antrim Basin in Michigan). 

	Figure
	Figure 40. Thickness and distribution of shales of the lower Bowland-Hodder unit that are within the gas window and at a depth greater than 5000 ft. 
	Figure 40. Thickness and distribution of shales of the lower Bowland-Hodder unit that are within the gas window and at a depth greater than 5000 ft. 


	Figure
	Figure 41. Thickness and distribution of shales of the upper Bowland-Hodder unit that are within the gas window and at a depth greater than 5000 ft. 
	Figure 41. Thickness and distribution of shales of the upper Bowland-Hodder unit that are within the gas window and at a depth greater than 5000 ft. 
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	THE CARBONIFEROUS BOWLAND SHALE GAS STUDY: GEOLOGY AND RESOURCE ESTIMATION 
	Figure
	Figure 42. Schematic geological cross-sections indicating where the Bowland-Hodder unit might be considered a shale gas target (labelled ‘Gas’ in the key). Liquids potential, where not thermally mature for gas (labelled “Oil”), are not considered within the scope of this study. For location of the section, see Figure 40 or 41. 
	Figure 42. Schematic geological cross-sections indicating where the Bowland-Hodder unit might be considered a shale gas target (labelled ‘Gas’ in the key). Liquids potential, where not thermally mature for gas (labelled “Oil”), are not considered within the scope of this study. For location of the section, see Figure 40 or 41. 
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	This interpretation is consistent with the detailed core analysis from wells (see Appendix B). In Old Dalby 1 in the Widmerpool Trough, high organic contents and high hydrogen indices (interpreted as o values of 0.6-0.7% at 4239-4450 ft sub-sea indicate that the lower Bowland-Hodder shales are immature for gas generation (Figure 40). 
	Type II kerogen) are encountered, but the calculated R

	o values of 1.0-1.1% at 6075-6100 ft sub-sea and 1.6-1.9% at 7423-7433 ft indicate that the upper shales are at the lower limit of the gas window, whilst the lower unit is within the gas window (Figures 40 and 41). In Grove 3, located on the East o values of 1.8% at 7354-7384 ft sub-sea) (Figure 40). 
	In Blacon East 1, in the Blacon Basin, the calculated R
	Midlands Shelf, a shale within the lower unit carbonates is also within the gas window (calculated R

	The resultant maps and cross-sections show the areal extent of the upper and lower shale gas plays together with the estimated thickness of gas-mature shale (Figures 40-42). There are indications that there is a significant volume of gas-mature Bowland-Hodder shale in the Bowland, Cleveland, Edale and Blacon basins and the Gainsborough Trough. The shales in the Widmerpool Trough and Nottingham Shelf are not mature for gas, but contain a significant volume of shale that is thermally within the oil window, wh
	While liquids associated with shale gas are highly sought after in North America, the recovery of liquids is lower yield than gas and therefore with the current high gas price in Europe it is anticipated that shale gas will be more commercially viable than producing liquids. However, the economics of both plays need more study once the results of wells are available. 
	Figure 43 shows that there is extant acreage which falls into the highly prospective areas for shale gas, so shale gas drilling and testing does need not wait upon the award of new licences. An update to DECC’s 2010 Strategic Environmental Assessment is currently being undertaken and a full consultation is planned to form the basis for the next onshore licensing round. 
	Some of the most prospective areas are in environmentally sensitive areas or under urban centres. Exploration and potential development will likely progress at a much slower pace to fully consider how adverse impacts can be mitigated and to obtain surface landowner access permissions (both for well sites and under the path of all deviated wells), but shale gas development of the Barnett Shale in the densely populated Dallas-Fort Worth Basin proves that it is not impossible. 
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	Figure
	Figure 43. Summary of areas prospective for gas in the upper and lower parts Bowland-Hodder unit in central Britain with currently licensed acreage shown. 
	Figure 43. Summary of areas prospective for gas in the upper and lower parts Bowland-Hodder unit in central Britain with currently licensed acreage shown. 


	Figure
	Figure 44. Summary of areas prospective for gas in the upper and lower parts Bowland-Hodder unit in relation to the urban areas of central Britain. Contains Ordnance Survey data © Crown copyright and database right 2013. 
	Figure 44. Summary of areas prospective for gas in the upper and lower parts Bowland-Hodder unit in relation to the urban areas of central Britain. Contains Ordnance Survey data © Crown copyright and database right 2013. 
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	4. Resource estimation 
	In 2010, a DECC-commissioned BGS study estimated that, by a simple scaled basin-size analogy with similar producing shale gas plays in North America, that the UK Carboniferous Upper Bowland Shale 
	(i.e. upper Bowland-Hodder unit) gas play, if analogous to the Barnett Shale of Texas, could potentially yield up to 4.7 tcf of gas or if analogous to the Antrim Shale, 2.1 tcf (DECC 2010a, BGS 2012). 
	Now, based on this detailed work undertaken in 2012-13, a rigorous gas-in-place resource estimation can be made for the Bowland-Hodder unit in central Britain. The details of this study’s calculation and its results are presented in Appendix A. 
	This study concludes that the stacked Bowland-Hodder unit can be separated into two genetically defined intervals, with different probabilities of success, largely due to the limited well penetrations of the deeper interval. The upper unit is well constrained with borehole penetrations, core analyses and moderate seismic control. It is a condensed interval characterised by high organic content, with evidence of gas in boreholes and high gamma ray signature in well logs which can be correlated over a large a
	Figure
	Figure 45. Probabilistic distribution and cumulative probability curve representing the result of a Monte Carlo analysis for the in-place resource estimation of shale gas in the upper Bowland-Hodder unit. 
	Figure 45. Probabilistic distribution and cumulative probability curve representing the result of a Monte Carlo analysis for the in-place resource estimation of shale gas in the upper Bowland-Hodder unit. 


	The lower unit’s expanded sequence must be viewed as a higher risk resource as it is much less explored – there are few well penetrations and it is poorly imaged on seismic data in the deepest, potentially most prospective basins (Widmerpool Gulf, Edale Basin and Gainsborough Trough), 
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	where thicknesses can reach 10,000 ft. The few deep well penetrations do show some high organic content, high gamma log prospective intervals that may prove to be laterally contiguous. The presence of large-scale slumps in the lower unit may also present challenges for shale gas exploration and production. In addition, the lower unit thickness, complex syn-rift structure and stratigraphy do not have any producing analogies in North America. Consequently, the estimated range of gas in-place for this thick se
	Figure
	Figure 46. Probabilistic distribution and cumulative probability curve representing the result of a Monte Carlo analysis for the in-place resource estimation of shale gas in the lower Bowland-Hodder unit. 
	Figure 46. Probabilistic distribution and cumulative probability curve representing the result of a Monte Carlo analysis for the in-place resource estimation of shale gas in the lower Bowland-Hodder unit. 


	The total range of estimated gas-in-place for the combined upper and lower units is 822 – 1329 – 2281 tcf. No estimate is made for the potential for liquid hydrocarbons, which is outside the scope of this study. 
	Table
	TR
	Total gas in-place estimates (tcf) 
	Total gas in-place estimates (tcm) 

	TR
	Low (P90) 
	Central (P50) 
	High (P10) 
	Low (P90) 
	Central (P50) 
	High (P10) 

	Upper unit 
	Upper unit 
	164 
	264 
	447 
	4.6 
	7.5 
	12.7 

	Lower unit 
	Lower unit 
	658 
	1065 
	1834 
	18.6 
	30.2 
	51.9 

	Total 
	Total 
	822 
	1329 
	2281 
	23.3 
	37.6 
	64.6 


	This estimate is a gas in-place (GIP) estimate, because a reliable estimate of recoverable shale gas cannot be made at this time (see Section 2.2). DECC does not include any onshore or offshore shale gas potential in the published estimates for Undiscovered Resources , where detailed mapping has identified undrilled prospectivity in basins where the uncertainties in evaluating prospectivity are much better understood. 
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	It must be noted that this Bowland Shale gas in-place (GIP) estimate is very large when compared with the total ultimate recovery of gas (i.e. gas reserves plus cumulative production) from the offshore UK, which is currently estimated at 92.7 -101.4 -109.0 tcf. Of this total, the cumulative amount of gas produced to the end of 2011 was 84.0 tcf. (See 
	https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/16096/6313
	https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/16096/6313
	https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/16096/6313
	-

	appendix-1-reserves-2012l.pdf) 


	However, only with further shale gas exploration drilling and testing over an extended period, and optimization of the extraction process, will it be possible to determine whether this identified shale gas prospectivity can be exploited commercially – and how significant a contribution it could make to the future UK energy mix. 
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	5. Glossary 
	Unit/abbreviation 
	Unit/abbreviation 
	Unit/abbreviation 
	Full name 

	API 
	API 
	standard (American Petroleum Institute) measure of natural gamma radiationtypically in a borehole 

	bcf 
	bcf 
	billion (109) cubic feet 

	Bg 
	Bg 
	gas expansion factor 

	ft 
	ft 
	foot/feet 

	ft³ or scf 
	ft³ or scf 
	(standard) cubic foot/feet 

	GIIP 
	GIIP 
	gas initially in place 

	HIo 
	HIo 
	original hydrogen index 

	HIpd 
	HIpd 
	present-day hydrogen index 

	km 
	km 
	kilometre(s) 

	km2 
	km2 
	square kilometre(s) 

	m 
	m 
	metre(s) (1 m = 3.28084 ft) 

	m³ 
	m³ 
	cubic metre(s) (1 m³ = 35.31467 ft³) 

	Ma 
	Ma 
	million years before present 

	mD 
	mD 
	millidarcy 

	MPa 
	MPa 
	megapascal(s) (1 MPa = 145 psi) 

	mmcfd 
	mmcfd 
	million (106) cubic feet of gas per day 

	mile²m 
	mile²m 
	a volume occupying an area of 1 square mile with a thickness of 1 metre (1 mile²m = 2,589,988 m³) 

	Ro 
	Ro 
	vitrinite reflectance (in oil) (%) 

	tcf 
	tcf 
	trillion (1012) cubic feet 

	tcm 
	tcm 
	trillion (1012) cubic metres 

	TOC 
	TOC 
	total organic carbon (%) 


	Figure
	Note (1) As the Global Stratotype for the base Pennsylvanian contains numerous non-sequences (Barnett & Wright 2008), precise correlation is not possible. 48 © DECC 2013 
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	Appendix A: Estimation of the total in-place gas resource in the Bowland-Hodder shales, central Britain 
	Aim 
	The aim of this study is to estimate the P10-P50-P90range of total gas-in-place volumes for the upper and lower Bowland-Hodder (Early Carboniferous) shale units across the Pennine Basin of central Britain. 
	1 
	1 


	This analysis forms the appendix to the main Bowland-Hodder report, which provides the detailed geological background to this shale gas play. This specific study applies a Monte Carlo simulation to a suite of input parameters, some of which come from the geology-based methodology described in the main report, and others which are based on information from published analogues. 
	Introduction 
	The total gas content of a shale is made up of two main components: 
	Free gas – the gas contained in pore spaces; this volume is very pressure dependent, and pressure is related to depth (assuming no overpressure). 
	Adsorbed gas – the gas which is adsorbed in the organic matter in the shale. The quantity of gas adsorbed is dependent on the quantity, type and distribution of the organic content within the shale, it is largely pressure independent. 
	In the USA shale gas plays, the ratio of adsorbed gas to free gas varies from 60:40 to 10:90 (Jarvie 2012). 
	Equations
	2 
	2 


	Free gas at standard conditions is calculated using the equation: 
	f =  A* h * φ * Bg 
	GIIP

	Where A  = area 
	h  = thickness 
	φ  = gas-filled porosity 
	g = gas expansion factor (depth dependant) 
	B
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	Adsorbed gas is calculated using the equation: 

	a = A * h * ρ * G Where A  = area h  = thickness 
	GIIP

	ρ = rock density 
	G = adsorbed gas content of shale (volume of gas/weight of shale) Where experimental analysis of core samples is available, the Langmuir equation is used to calculate G: 
	l l + P l = Langmuir volume [volume of adsorbed gas at infinite pressure] l = Langmuir pressure [pressure where one-half of the gas at infinite pressure has been desorbed] P = Reservoir pressure 
	G =
	G
	* P 
	P
	Where G
	P

	f) + Adsorbed gas (GIIPa) 
	Total gas in place (GIIP) (at standard conditions) = Free gas (GIIP 

	Values used 
	Free gas 
	The controlling factors for free gas are area, thickness, gas-filled porosity and depth (and overpressure, if present). Those factors that are estimated in this study are shown in bold; those that rely on analogues are shown in italics. 
	Rather than inputting parameters for area and thickness separately, a figure for net shale volume has been used. This is the volume of organic-rich shale (TOC>2%) which is considered mature for gas o>1.1). The explanation of how this volume was derived can be found in Section 3.9 of the main report. Error bars of ± 15% have been used to take into account uncertainties in the seismic mapping. 
	generation (R

	Specific information on the gas-filled porosities of UK shales is not available. Reported gas-filled porosities for US gas shales are in the range 1-5% (Curtis 2002) and 2.9-6% (Jarvie 2012) (Table 1). Lewis et al. (2004) quotes a figure of 4-6% porosity for gas shales. For an undeveloped play in the Netherlands, TNO (2009) used the Curtis (2002) figures of 1-5% gas-filled porosity. These conservative figures are used in this analysis: a log-normal distribution with a mean of 3% porosity with a two standard
	g) converts the volume of free gas under reservoir conditions into a volume under atmospheric conditions using the formula: 
	The gas expansion factor (B

	g = depth (m) /10.7 
	B

	It is not known whether the UK shales are overpressured, and hydrostatic pressure has been assumed. Any overpressure would increase the quantity of free gas stored in the pore spaces. Shale gas accumulations in the USA are commonly overpressured. 
	2 © DECC 2013 
	Adsorbed gas 
	The controlling factors are area, thickness, shale density and adsorbed gas content of shale. Those factors that are estimated in this study are shown in bold; those that rely on analogues are shown in italics. 
	Langmuir volumes can be obtained experimentally from core samples, but none have been published for shales in the UK. Published values of adsorbed gas contents of shales in the USA are as follows: 
	Source 
	Source 
	Source 
	Basin/area 
	Gas-filled porosity (%) 
	Total gas content (scf/ton) 
	Adsorbed gas (%) 
	Adsorbed gas content (scf/ton) 
	Adsorbed gas content (m3/ton) 

	Curtis (2002) 
	Curtis (2002) 
	Antrim 
	4 
	40 -100 
	70 
	28 -70 
	0.8 -2.0 

	Curtis (2002) 
	Curtis (2002) 
	Ohio 
	2 
	60 -100 
	50 
	30 -50 
	0.8 -1.4 

	Curtis (2002) 
	Curtis (2002) 
	New Albany 
	5 
	40 -80 
	40 -60 
	16 -32 
	0.5 -0.9 

	Curtis (2002) 
	Curtis (2002) 
	Barnett 
	2.5 
	300 -350 
	20 
	60 -70 
	1.7 -2.0 

	Curtis (2002) 
	Curtis (2002) 
	Lewis 
	1 -3.5 
	15 -45 
	60 -85 
	9 -27 
	0.3 -0.8 

	Jarvie (2012) 
	Jarvie (2012) 
	Marcellus 
	4 
	60 -150 
	45 
	27 -67.5 
	0.8 -1.9 

	Jarvie (2012) 
	Jarvie (2012) 
	Haynesville 
	6 
	100 -330 
	25 
	25 -82.5 
	0.7 -2.3 

	Jarvie (2012) 
	Jarvie (2012) 
	Bossier 
	4 
	50 -150 
	55 
	27.5 -82.5 
	0.8 -2.3 

	Jarvie (2012) 
	Jarvie (2012) 
	Barnett 
	5 
	300 -350 
	55 
	165 -192.5 
	4.7 -5.5 

	Jarvie (2012) 
	Jarvie (2012) 
	Fayetteville 
	4.5 
	60 -220 
	50 -70 
	30 -110 
	0.8 -3.1 

	Jarvie (2012) 
	Jarvie (2012) 
	Muskwa 
	4 
	90 -110 
	20 
	18 -22 
	0.5 -0.6 

	Jarvie (2012) 
	Jarvie (2012) 
	Woodford 
	3 
	200 -300 
	60 
	120 -180 
	3.4 -5.1 

	Jarvie (2012) 
	Jarvie (2012) 
	Eagle Ford 
	4.5 
	200 -220 
	25 
	50 -55 
	1.4 -1.6 

	Jarvie (2012) 
	Jarvie (2012) 
	Utica 
	2.9 
	70 
	60 
	42 
	1.2 

	Jarvie (2012) 
	Jarvie (2012) 
	Montney 
	3.5 
	300 
	10 
	30 
	0.8 


	Table 1. Summary of parameters for various shales in the USA that are relevant to gas resource calculations in this study (from Curtis 2002, Jarvie 2012). 
	For the modelling undertaken in this report, a fairly conservative range of adsorbed gas contents of 
	0.5 to 2.0 m/ton (18-71 scf/ton) has been taken. There is a linear relationship between gas contents and TOC values, and the use of a lower gas content value relative to the US examples (which tend to have a slightly higher TOC) is reasonable. See Section 3.8 of the main report for a discussion on UK TOC values. 
	3

	Published shale densities are in the range 2.4-2.8 g/cm³. This study has used 2.55 – 2.6 – 2.65 g/cm³ as a range of values for calcareous shale. This is supported by downhole geophysical well logs in the study area. 
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	Monte Carlo input parameters 
	f) 
	For free gas-in-place (GIIP

	Table
	TR
	Net mature shale volume (m³) 
	Median depth (m) 
	Gas-filled porosity (%) 

	TR
	cut-off 
	ml 
	cut-off 
	min 
	ml 
	max 
	cut-off 
	mean 
	cut-off 

	Upper unit 
	Upper unit 
	7.90E+11 
	9.31E+11 
	1.15E+12 
	1800 
	2100 
	2400 
	0.5 
	3 
	10 

	Lower unit 
	Lower unit 
	2.90E+12 
	3.45E+12 
	3.97E+12 
	2100 
	2400 
	2700 
	0.5 
	3 
	10 


	a) 
	For adsorbed gas-in-place (GIIP

	Table
	TR
	Net mature shale volume (m³) 
	Density (g/cm³) 
	Adsorbed gas content (m³/t) 

	TR
	cut-off 
	ml 
	cut-off 
	min 
	ml 
	max 
	min 
	max 

	Upper unit 
	Upper unit 
	7.90E+11 
	9.31E+11 
	1.15E+12 
	2.55 
	2.6 
	2.65 
	0.5 
	2 

	Lower unit 
	Lower unit 
	2.90E+12 
	3.45E+12 
	3.97E+12 
	2.55 
	2.6 
	2.65 
	0.5 
	2 


	Table 2. Input parameters for the Monte Carlo simulation used to determine the total gas content and total gas in place in the upper and lower parts of the Bowland-Hodder unit, central Britain. 
	Monte Carlo results 
	(a) Metric 
	(a) Metric 
	(a) Metric 
	Total gas content estimates (m³/m³) 
	Total gas in-place estimates (tcm) 

	TR
	Low (P90) 
	Central (P50) 
	High (P10) 
	Low (P90) 
	Central (P50) 
	High (P10) 

	Upper unit 
	Upper unit 
	3.9 
	7.9 
	14.8 
	4.6 
	7.5 
	12.7 

	Lower unit 
	Lower unit 
	4.2 
	8.7 
	16.3 
	18.6 
	30.2 
	51.9 


	(b) Imperial 
	(b) Imperial 
	(b) Imperial 
	Total gas content estimates (bcf/mile²m) 
	Total gas in-place estimates (tcf) 

	TR
	Low (P90) 
	Central (P50) 
	High (P10) 
	Low (P90) 
	Central (P50) 
	High (P10) 

	Upper unit 
	Upper unit 
	0.36 
	0.73 
	1.35 
	164 
	264 
	447 

	Lower unit 
	Lower unit 
	0.39 
	0.79 
	1.49 
	658 
	1065 
	1834 


	Table 3. Results of a Monte Carlo simulation (500,000 iterations) to determine the total gas content and total in-place gas resource in the upper and lower parts of the Bowland-Hodder unit, central Britain. The results are given in (a) metric and (b) imperial units. 
	Note that USEIA (2001a) used a figure of 48 bcf/mile² with a thickness of 148 ft (45.1 m), which gives an equivalent value of 1.06 bcf/mile²m. 
	4 © DECC 2013 
	Figure
	Figure 1. Probabilistic distribution and cumulative probability curve representing the result of a Monte Carlo analysis for the in-place resource estimation of shale gas in the upper Bowland-Hodder unit. 
	Figure
	Figure 2. Probabilistic distribution and cumulative probability curve representing the result of a Monte Carlo analysis for the in-place resource estimation of shale gas in the lower Bowland-Hodder unit. 
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	Key variables and their effect on the estimated gas volume 
	Variable 
	Variable 
	Variable 
	Uncertainty 

	Gross rock volume/3D geological model 
	Gross rock volume/3D geological model 
	The 2D seismic data interpreted in the study area is of variable quality, and is generally poor to moderate. A two-standard-deviation variation has been used on the gross rock volume, but it could be greater, resulting in a wider range of estimated gas volumes. 

	Definition of prospective shale 
	Definition of prospective shale 
	The definition of net prospective shale used in this report could be optimistic; it includes a wide variety of shales and not just those with the highest gamma-log response (and hence highest TOC). This definition is influenced by the fact that the most suitable shales for current extraction techniques are not necessarily those with the highest TOC. Any approach which is more pessimistic would have the greatest effect on the lower Bowland-Hodder unit volumes. 

	Definition of gas maturity 
	Definition of gas maturity 
	The use of Ro > 1.1% as the top of the gas window is possibly optimistic. It could be 1.4% which would reduce the estimated gas volume. 

	Shallow depth cut-off 
	Shallow depth cut-off 
	The use of 5000 ft is based on USGS global screening criteria. If this were deeper, this would reduce the estimated gas volume. 

	Gas-filled porosity of the shale 
	Gas-filled porosity of the shale 
	The use of a mean of 3% is a conservative estimate. It could be greater, which would increase the estimated gas volume. The large range of values has a significant effect on the calculated in-place gas figure (see Figures 3 & 4). 

	Reservoir pressure 
	Reservoir pressure 
	The assumption that the shales are at hydrostatic pressure is conservative. Any amount of overpressure would increase the estimated gas volume. 

	Adsorbed gas content 
	Adsorbed gas content 
	The use of 0.5-2.0 m³/ton is lower than some US analogues. Any increase in this range of values would increase the estimated gas volume. 

	Bulk density 
	Bulk density 
	The average density of 2.6 g/cm³ is a robust estimate. If the density is higher this will increase the estimated gas volume (and vice versa). 
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	Figure
	Figure 3. Tornado diagram representing the result of a Monte Carlo analysis for the in-place resource estimation of shale gas in the lower Bowland-Hodder unit. 
	Figure
	Figure 4. Tornado diagram representing the result of a Monte Carlo analysis for the in-place resource estimation of shale gas in the lower Bowland-Hodder unit. 
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	Conclusion 
	This study estimates that the total in-place gas resource for the Bowland-Hodder (Carboniferous) shales across northern England is 822 – 1329 – 2281 tcf (23.3 – 37.6 – 64.6 tcm) (P90 – P50 – P10). It should be emphasised that this figure is an in-place resource estimate. The amount that could be recovered depends on factors outwith the scope of this report, and could very likely be a small percentage. 
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	Appendix B: Rock-Eval geochemical analysis of 109 samples from the Carboniferous of the Pennine Basin, including the Bowland-Hodder unit 
	Introduction 
	One hundred and nine core samples were collected from 16 selected wells within the Carboniferous Pennine Basin of central Britain (Figure 1, Table 1) and analysed using the BGS Rock-Eval machine. The spreadsheet of data derived from the Rock-Eval analysis (Appendix 1) records depths and the 1 (free hydrocarbons), S2 (bound hydrocarbons), Tmax (the temperature 2 peaked), S3 (carbon dioxide) and the total organic carbon (TOC). 
	main parameters measured -S
	at which S

	Figure
	Figure 1. Map of central Britain showing the Early Carboniferous basins and the locations of the 16 sampled wells. 
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	Well name 
	Well name 
	Well name 
	top sample (ft) 
	bottom sample (ft) 
	Chronostratigraphy 
	Lithostratigraphy 
	Unit (this report) 

	Black Hill 
	Black Hill 
	218.2 
	246.1 
	Namurian (Marsdenian?) 
	Millstone Grit 
	Millstone Grit 

	Blacon East 1 
	Blacon East 1 
	6122.0 
	6147.6 
	Visean (Brigantian) 
	Bowland Shale Fm 
	Upper BHU 

	TR
	7423.0 
	7432.6 
	Visean (?Asbian) 
	Clwyd Limestone Group 
	?shelf limestone 

	Bosley 1 
	Bosley 1 
	6568.9 
	6582.7 
	Chadian 
	Lower BHU? 

	Brigg 1 
	Brigg 1 
	6328.4 
	6336.9 
	Visean 
	Carboniferous limestone 
	shelf limestone 

	Clitheroe 
	Clitheroe 
	403.2 
	761.8 
	Visean 
	Hodder Mudstone 
	Lower BHU 

	Grove 3 
	Grove 3 
	7564.6 
	7594.0 
	Visean (Chadian) 
	Carboniferous limestone 
	shelf limestone 

	Heywood 1 
	Heywood 1 
	5249.2 
	5260.2 
	Visean (Asbian-Brigantian) 
	Carboniferous limestone 
	shelf limestone 

	High Ings Barn 
	High Ings Barn 
	313.3 
	719.5 
	Visean 
	Carboniferous limestone 
	shelf limestone 

	Long Eaton 1 
	Long Eaton 1 
	5871.0 
	5901.0 
	Visean (Arundian-Holkerian) 
	Long Eaton Fm 
	Lower BHU 

	Nooks Farm 1A 
	Nooks Farm 1A 
	1401.0 
	1531.0 
	Visean (Asbian-Brigantian) 
	Onecote Sandstone 
	Lower BHU 

	Old Dalby 1 
	Old Dalby 1 
	4562.3 
	4773.6 
	Visean (Asbian-Brigantian) 
	Widmerpool Fm 
	Lower BHU 

	Ratcliffe-on-Soar 1 
	Ratcliffe-on-Soar 1 
	891.4 
	949.8 
	Namurian (Arnsbergian) 
	Rempstone Fm 
	Millstone Grit 

	Rempstone 1 
	Rempstone 1 
	2181.8 
	2191.6 
	Namurian (Arnsbergian) 
	Upper Bowland Shale 
	Upper BHU 

	Roddlesworth 1 
	Roddlesworth 1 
	4226.0 
	4281.0 
	Visean (Asbian-Brigantian) 
	Carboniferous limestone 
	shelf limestone 

	Swinden 1 
	Swinden 1 
	98.4 
	2065.3 
	Tournasian (Courceyan) 
	Carboniferous limestone 
	shelf limestone 

	Wessenden 1 
	Wessenden 1 
	3505.0 
	3513.0 
	Tournasian (Courceyan) 
	Carboniferous limestone 
	shelf limestone 


	Table 1. Wells analysed in this study, together with stratigraphic information. BHU = Bowland-Hodder unit, as used in the main shale gas assessment report. 
	In addition, the principal useful parameters derived from the data include Production Index (PI), pd) and Oxygen Index (OI). PI is the sum of the S1 and S2 pd is derived by the ratio of S2 mg HC per gram of organic carbon and values above 350 are generally rated to be good source rocks (for conventional hydrocarbons, Tissot & Welte 1978, Fig. V.1.11). OI is the ratio of mg carbon dioxide per g organic carbon. HI and OI are plotted to be comparable with the van Krevelen diagram, showing the branching of the 
	present-day Hydrogen Index (HI
	hydrocarbons. HI
	in the source rock at lower maturities (R
	al. 2011) than in conventional gas fields (gas window R

	Total organic carbon (TOC) 
	Of the 16 wells, notably the Grove 3 and Brigg 1 samples were visually very light coloured, because they were from conventional reservoirs and give low TOC values (Figure 2). Samples from the other 14 wells had the appearance of dark grey and black shales containing probable organic matter. Rempstone 1, Ratcliffe-on-Soar 1 and Old Dalby 1, located in the Widmerpool Gulf, the southern sub-basin within the Pennine Basin, all had fairly consistent characters including consistently high TOC (Figure 2). 
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	The Barnett Shale at crop has very high TOC (13.08%, Jarvie et al. 2005). During maturation organic matter is inevitably destroyed (Jarvie 2008). Jarvie et al. (2005) reported that ‘artificially maturing’ immature samples from one well reduced TOC by approximately 36% from its original value, whereas at peak oil maturity this had only been reduced by 18%. This could explain why the three Widmerpool Gulf wells had the highest TOC values and are immature (Figure 2). 

	Comparing the Pennine Basin samples with the Barnett Shale makes it clear that the former are slightly leaner (Figure 5). 
	Figure
	Figure 2. Average total organic carbon content of samples from the 16 selected wells. 
	Kerogen type 
	Kerogen types are identified by plotting on a modified van Krevelen diagram (Figure 3). Typical Type I (algal, lacustrine Green River Shale), Type II (oil prone Toarcian of Paris Basin) and Type III (gas prone Tertiary of Greenland) have been included. Some publications show the Type III curve emerging at about HI=100 (e.g. Tissot & Welte 1978, fig. V.1.12), nearer to the Greenland example (Figure 3, blue cross), which would seem preferable, so that the Paris Basin example plots in the Type II field. Some o
	Roche (2012, Fig. 7) showed Thistleton 1 samples as being Type III kerogens, mostly in the oil window, whereas Bowland outcrop samples plotted at immature or early oil window as Type II kerogens. 
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	However, many Barnett Shale samples also plot near the base of modified van Krevelen diagrams and are considered to have been originally Type II kerogens, based on Barnett low maturity outcrops in the southern margin of the Fort Worth Basin e.g. at Lampasas (Jarvie et al. 2005). The samples in deeper parts of the basin are interpreted to have ‘matured’ to positions with very low HI (Figure 3). Similarly, the DECC samples differentiate into Widmerpool Gulf well samples, which plot in the Type II field, and t
	Figure
	Figure 3. Modified van Krevelen diagram showing examples of Types I-III kerogens and relationship to the samples [Red = Rempstone 1; green = Ratcliffe-on-Soar 1; purple =Old Dalby 1; blue = remainder (see Fig. 1 for well locations)] 
	max (measured in degrees centigrade) 
	T

	max is the Rock-Eval equivalent of vitrinite reflectance (Ro), similarly indicating the maturity of the max to vitrinite reflectance is by the following formula (Jarvie et al. 2005): 
	T
	sample. Conversion of T

	o % = 0.018 x Tmax -7.16 
	Calculated R

	In the spreadsheet (Appendix 1), the various maturity windows have been indicated by the cell background colour. Immature samples have a background yellow, oil window samples are green, shale wet gas window samples are orange and shale dry gas samples are red. 
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	max is recorded for two samples. The Heywood sample (Tmax = 352) and one Swinden max = 331) are not shown on Figure 4. These two samples might be comparable with Barnett Shale and Bossier Shale Type III gas-prone sediments (Jarvie et al. 2007), but the rest of the max becomes more erratic at high maturity. The current samples conform quite closely to the pattern established for the Barnett Shale (Jarvie et al. max of 331 should perhaps be disregarded. Four samples at about 410-430 max might indicate both im
	Very low T
	sample (T
	Swinden 1 samples are within the dry gas window. T
	2005). The low Swinden T
	T

	Figure
	max. This is known as a modified Espitalie kerogen type and maturity plot. 
	Figure 4. Plot of Hydrogen Index versus T

	Hydrogen Index 
	The HI of 500 to about 160 obtained from the Widmerpool Gulf samples from wells Rempstone 1, Ratcliffe-on-Soar  1 and Old Dalby 1 defines this group as Type II, comparable with the Mitcham well of the Barnett Shale kerogen (Figure 4). This is supported by other studies showing Type II (HI = 
	248.5) and some Type III (HI = 46.1) in the Pennine Basin (Ewbank et al. 1993). With increasing max = 460 (at the onset of gas window maturity) the HI values of this study and the Barnett wells are mainly below 50 (Figure 4). 
	maturity the HI decreases, so that above T
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	) 
	Remaining hydrocarbon potential (S
	2

	2 against TOC, as done for the Barnett Shale (Jarvie & Lundell 1991, Jarvie et al. 2005), shows that a similar pattern occurs for the current Pennine Basin (DECC) data (Figure 5). The types of kerogen are shown, together with the organic lean area (TOC <1%) and the Barnett Shale maturation trend. This trend shows that during maturation, TOC declines (Mitcham well, Jarvie et al. 2005), incidentally creating porosity within the thermally more mature sections. 
	Plotting S

	P
	Figure

	) v TOC (cf. Jarvie & Lundell 1991). The orange arrow shows the Barnett Shale maturation trend (from Jarvie 2008). The current data, combining different sub-basins, collectively shows a gentler trend, resulting in residually lower TOC than the Barnett Shale. [Red = Rempstone 1; green = Ratcliff-on-Soar 1; purple =Old Dalby 1; blue = remainder] 
	Figure 5. Remaining hydrocarbon potential (S
	2

	Production index 
	The production index is the ratio of free hydrocarbons to the total free and bound hydrocarbons /S1 + S). Values of 0.1 up to 0.4 define the oil window. Hence in the Widmerpool Gulf  (Figure 6), Long Eaton 1, west of Nottingham, is more mature than Rempstone 1, Old Dalby 1 and Ratcliffe-on-Soar 1, which are south of Nottingham. Long Eaton 1 lies within the gas window at the levels of the samples, confirmed by its position on the van Krevelen diagram (Figure 3), whereas the others plot within the oil window.
	(S
	1
	2

	14 © DECC 2013 
	Figure
	Figure 6. Widmerpool Gulf wells showing the onset of the conventional gas window maturity (Long Eaton 1) and the conventional oil window maturity (Ratcliffe-on-Soar 1). 
	Conclusions 
	For the Barnett Shale, Jarvie et al. (2005) concluded that although the shale currently plots in the gas window in the Type III kerogen part of the field in a modified van Krevelen diagram, the original kerogen had been Type II. This was based on outcrop data and data from immature wells. This important conclusion showed that during maturation the type of kerogen appears to change and the TOC decreases. An almost identical situation has been proven for the Craven Basin samples of this study with respect to 
	Eaton 1). The samples that do not fit the Barnett model are those which have a low T
	-

	This geochemical evidence supports the comparison made by Smith et al. 2011 between the UK Upper Bowland Shale and the US Barnett Shale and the previous decision to compare the potential productivity of the UK Carboniferous Pennine Basin Upper Bowland Shale with the ongoing production from the Fort Worth Basin’s Barnett Shale (DECC 2010). However, it should be emphasised that the Upper Bowland Shale is organically leaner than the Barnett Shale. 
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	Appendix A1. Selected output from the Rock-Eval analysis of 16 wells in central Britain. The various maturity windows are indicated by the cell background colour: yellow = immature, green = oil window, orange = shale wet gas window, red = shale dry gas. 
	Appendix A1. Selected output from the Rock-Eval analysis of 16 wells in central Britain. The various maturity windows are indicated by the cell background colour: yellow = immature, green = oil window, orange = shale wet gas window, red = shale dry gas. 
	Appendix A1. Selected output from the Rock-Eval analysis of 16 wells in central Britain. The various maturity windows are indicated by the cell background colour: yellow = immature, green = oil window, orange = shale wet gas window, red = shale dry gas. 

	Well 
	Well 
	BGS sample number 
	Depth (m) 
	Depth (ft) 
	S1 (mg/g) 
	S2 (mg/g) 
	PI 
	Tmax (°C) 
	S3 (mg/g) 
	S3' (mg/g) 
	PC (%) 
	RC (%) 
	TOC (%) 
	HI 
	OICO 
	OI 
	pyroMINC (%) 
	oxiMINC (%) 
	MINC (%) 

	Black Hill 
	Black Hill 
	13003-0001 
	66.5 
	218.2 
	0.19 
	1.22 
	0.14 
	467 
	0.27 
	7 
	0.13 
	1.85 
	1.98 
	62 
	9 
	14 
	0.19 
	0.07 
	0.26 

	Black Hill 
	Black Hill 
	13003-0002 
	68.8 
	225.7 
	0.3 
	0.99 
	0.23 
	450 
	0.11 
	1.9 
	0.12 
	1.91 
	2.03 
	49 
	3 
	5 
	0.06 
	0.07 
	0.13 

	Black Hill 
	Black Hill 
	13003-0003 
	69.6 
	228.3 
	0.4 
	1.33 
	0.23 
	450 
	0.12 
	4.3 
	0.15 
	2.3 
	2.45 
	54 
	5 
	5 
	0.12 
	0.21 
	0.33 

	Black Hill 
	Black Hill 
	13003-0004 
	70.5 
	231.3 
	0.23 
	0.82 
	0.22 
	456 
	0.13 
	1.3 
	0.1 
	2.15 
	2.25 
	36 
	5 
	6 
	0.04 
	0.1 
	0.13 

	Black Hill 
	Black Hill 
	13003-0005 
	71.4 
	234.3 
	0.32 
	0.97 
	0.25 
	445 
	0.19 
	3 
	0.12 
	2.03 
	2.15 
	45 
	4 
	9 
	0.09 
	0.35 
	0.44 

	Black Hill 
	Black Hill 
	13003-0006 
	72.3 
	237.2 
	0.45 
	1.42 
	0.24 
	449 
	0.17 
	1.6 
	0.17 
	2.17 
	2.34 
	61 
	6 
	7 
	0.05 
	0.19 
	0.24 

	Black Hill 
	Black Hill 
	13003-0007 
	73.2 
	240.2 
	0.32 
	1.16 
	0.22 
	447 
	0.21 
	3.6 
	0.14 
	1.99 
	2.13 
	54 
	3 
	10 
	0.1 
	0.41 
	0.51 

	Black Hill 
	Black Hill 
	13003-0008 
	74.1 
	243.1 
	0.34 
	1.41 
	0.19 
	440 
	0.26 
	5.6 
	0.16 
	1.75 
	1.91 
	74 
	4 
	14 
	0.16 
	0.46 
	0.61 

	Black Hill 
	Black Hill 
	13003-0009 
	75.0 
	246.1 
	0.29 
	0.93 
	0.24 
	442 
	0.24 
	13 
	0.11 
	1.55 
	1.66 
	56 
	2 
	14 
	0.36 
	2.91 
	3.27 

	Blacon East 
	Blacon East 
	13003-0010 
	6122.0 
	0.03 
	0.11 
	0.21 
	461 
	0.12 
	3.70 
	0.02 
	0.63 
	0.65 
	17 
	5 
	18 
	0.10 
	0.17 
	0.27 

	Blacon East 
	Blacon East 
	13003-0011 
	6134.0 
	0.10 
	0.31 
	0.24 
	460 
	0.22 
	5.00 
	0.04 
	1.36 
	1.40 
	22 
	2 
	16 
	0.14 
	0.32 
	0.46 

	Blacon East 
	Blacon East 
	13003-0012 
	6139.0 
	0.28 
	0.85 
	0.25 
	451 
	0.38 
	14.20 
	0.11 
	4.03 
	4.14 
	21 
	3 
	9 
	0.39 
	2.66 
	3.05 

	Blacon East 
	Blacon East 
	13003-0013 
	6147.6 
	0.48 
	1.30 
	0.27 
	457 
	0.33 
	8.40 
	0.16 
	5.52 
	5.68 
	23 
	1 
	6 
	0.24 
	1.14 
	1.37 

	Blacon East 
	Blacon East 
	13003-0014 
	7423.0 
	0.01 
	0.19 
	0.06 
	488 
	0.21 
	7.20 
	0.03 
	1.13 
	1.16 
	16 
	3 
	18 
	0.20 
	7.86 
	8.06 

	Blacon East 
	Blacon East 
	13003-0015 
	7428.0 
	0.00 
	0.05 
	0.04 
	501 
	0.30 
	10.40 
	0.01 
	0.66 
	0.67 
	7 
	4 
	45 
	0.28 
	3.51 
	3.79 

	Blacon East 
	Blacon East 
	13003-0016 
	7432.6 
	0.00 
	0.00 
	0.60 
	496 
	0.26 
	3.80 
	0.01 
	0.16 
	0.17 
	0 
	24 
	153 
	0.10 
	9.18 
	9.28 

	Bosley 
	Bosley 
	13003-0017 
	2002.2 
	6568.9 
	0.00 
	0.00 
	0.76 
	497 
	0.28 
	9.5 
	0.01 
	0.22 
	0.23 
	0 
	13 
	122 
	0.26 
	11.11 
	11.37 

	Bosley 
	Bosley 
	13003-0018 
	2003.0 
	6571.5 
	0.01 
	0.11 
	0.08 
	431 
	0.37 
	10.6 
	0.02 
	1.07 
	1.09 
	10 
	3 
	34 
	0.29 
	6 
	6.3 

	Bosley 
	Bosley 
	13003-0019 
	2003.7 
	6573.8 
	0.01 
	0.03 
	0.21 
	581 
	0.38 
	7.7 
	0.02 
	0.94 
	0.96 
	3 
	5 
	40 
	0.21 
	10.03 
	10.24 

	Bosley 
	Bosley 
	13003-0020 
	2004.0 
	6574.8 
	0.00 
	0.00 
	0.29 
	495 
	0.39 
	4.5 
	0.01 
	0.09 
	0.1 
	0 
	50 
	390 
	0.12 
	11.28 
	11.41 

	Bosley 
	Bosley 
	13003-0021 
	2005.8 
	6580.7 
	0.02 
	0.04 
	0.31 
	447 
	0.51 
	7.5 
	0.03 
	0.72 
	0.75 
	5 
	15 
	68 
	0.21 
	9.9 
	10.11 

	Bosley 
	Bosley 
	13003-0022 
	2006.4 
	6582.7 
	0.01 
	0.04 
	0.22 
	591 
	0.46 
	11.2 
	0.02 
	1.34 
	1.36 
	3 
	7 
	34 
	0.31 
	5.44 
	5.75 

	Brigg 1 
	Brigg 1 
	13003-0023 
	1928.9 
	6328.4 
	0.08 
	0.37 
	0.18 
	443 
	0.44 
	2.90 
	0.05 
	0.52 
	0.57 
	65 
	7 
	77 
	0.08 
	0.01 
	0.09 

	Brigg 1 
	Brigg 1 
	13003-0024 
	1930.0 
	6332.0 
	0.00 
	0.00 
	0.00 
	453 
	0.13 
	1.70 
	0.01 
	0.06 
	0.07 
	0 
	57 
	186 
	0.05 
	12.16 
	12.20 


	17 © DECC 2013 
	17 © DECC 2013 
	18 © DECC 2013 
	19 © DECC 2013 
	20 © DECC 2013 
	21 © DECC 2013 

	Well 
	Well 
	Well 
	BGS sample number 
	Depth (m) 
	Depth (ft) 
	S1 (mg/g) 
	S2 (mg/g) 
	PI 
	Tmax (°C) 
	S3 (mg/g) 
	S3' (mg/g) 
	PC (%) 
	RC (%) 
	TOC (%) 
	HI 
	OICO 
	OI 
	pyroMINC (%) 
	oxiMINC (%) 
	MINC (%) 

	Brigg 1 
	Brigg 1 
	13003
	-

	1930.8 
	6334.6 
	0.01 
	0.01 
	0.52 
	418 
	0.14 
	4.20 
	0.01 
	0.05 
	0.06 
	17 
	50 
	233 
	0.11 
	11.75 
	11.87 

	Brigg 1 
	Brigg 1 
	13003
	-

	1931.5 
	6336.9 
	0.01 
	0.05 
	0.18 
	429 
	0.16 
	2.20 
	0.01 
	0.09 
	0.10 
	50 
	20 
	160 
	0.06 
	12.31 
	12.37 

	Clitheroe 
	Clitheroe 
	13003
	-

	122.9 
	403.2 
	0.65 
	1.21 
	0.35 
	463 
	0.24 
	6. 
	0.17 
	1.89 
	2.06 
	59 
	5 
	12 
	0.18 
	4.77 
	4.95 

	Clitheroe 
	Clitheroe 
	13003
	-

	127.3 
	417.7 
	0.21 
	0.42 
	0.34 
	459 
	0.17 
	6.30 
	0.06 
	1.02 
	1.08 
	39 
	3 
	16 
	0.17 
	3.41 
	3.58 

	Clitheroe 
	Clitheroe 
	13003
	-

	215.05 
	705.5 
	0.15 
	0.25 
	0.37 
	455 
	0.20 
	8.60 
	0.04 
	0.68 
	0.72 
	35 
	10 
	28 
	0.23 
	6.19 
	6.43 

	Clitheroe 
	Clitheroe 
	13003
	-

	218.08 
	715.5 
	0.15 
	0.42 
	0.27 
	460 
	0.17 
	6.20 
	0.06 
	1.32 
	1.38 
	30 
	6 
	12 
	0.17 
	2.60 
	2.78 

	Clitheroe 
	Clitheroe 
	13003
	-

	222.99 
	731.6 
	0.50 
	1.02 
	0.33 
	457 
	0.27 
	7.60 
	0.14 
	2.16 
	2.30 
	44 
	5 
	12 
	0.21 
	4.32 
	4.53 

	Clitheroe 
	Clitheroe 
	13003
	-

	228.2 
	748.7 
	0.40 
	0.71 
	0.36 
	456 
	0.26 
	8. 
	0.11 
	1.52 
	1.63 
	44 
	7 
	16 
	0.23 
	3.60 
	3.83 

	Clitheroe 
	Clitheroe 
	13003
	-

	232.2 
	761.8 
	0.14 
	0.20 
	0.41 
	458 
	0.19 
	7. 
	0.04 
	0.81 
	0.85 
	24 
	8 
	22 
	0.21 
	6.81 
	7.02 

	Grove 3 
	Grove 3 
	13003
	-

	2305.7 
	7564.6 
	0.01 
	0.00 
	0.97 
	496 
	0.23 
	9.00 
	0.01 
	0.09 
	0.10 
	0 
	10 
	230 
	0.25 
	13.07 
	13.32 

	Grove 3 
	Grove 3 
	13003
	-

	2306.5 
	7567.3 
	0.00 
	0.00 
	0.00 
	495 
	0.32 
	11.60 
	0.01 
	0.11 
	0.12 
	0 
	17 
	267 
	0.32 
	12.92 
	13.24 

	Grove 3 
	Grove 3 
	13003
	-

	2314.66 
	7594.0 
	0.00 
	0.00 
	0.00 
	495 
	0.39 
	17.00 
	0.01 
	0.22 
	0.23 
	0 
	9 
	170 
	0.46 
	12.72 
	13.19 

	Heywood 
	Heywood 
	13003
	-

	1600.0 
	5249.2 
	0.09 
	0.06 
	0.59 
	414 
	0.36 
	12.30 
	0.03 
	0.58 
	0.61 
	10 
	8 
	59 
	0.34 
	8.92 
	9.26 

	Heywood 
	Heywood 
	13003
	-

	1601.0 
	5252.6 
	0.04 
	0.06 
	0.40 
	352 
	0.22 
	8.30 
	0.02 
	1.08 
	1.10 
	5 
	5 
	20 
	0.23 
	1.71 
	1.94 

	Heywood 
	Heywood 
	13003
	-

	1602.4 
	5257.2 
	0.01 
	0.02 
	0.35 
	427 
	0.14 
	7.40 
	0.01 
	0.74 
	0.75 
	3 
	9 
	19 
	0.20 
	0.22 
	0.42 

	Heywood 
	Heywood 
	13003
	-

	1603.3 
	5260.2 
	0.00 
	0.00 
	0.96 
	496 
	0.25 
	4.80 
	0.01 
	0.10 
	0.11 
	0 
	45 
	227 
	0.13 
	9.94 
	10.07 

	High Ings 
	High Ings 
	13003
	-

	95.5 
	313.3 
	0.11 
	0.25 
	0.30 
	452 
	0.17 
	5.20 
	0.04 
	0.49 
	0.53 
	47 
	4 
	32 
	0.15 
	11.05 
	11.20 

	High Ings 
	High Ings 
	13003
	-

	98.0 
	321.5 
	0.07 
	0.37 
	0.16 
	455 
	0.16 
	7. 
	0.05 
	0.99 
	1.04 
	36 
	6 
	15 
	0.21 
	3.62 
	3.84 

	High Ings 
	High Ings 
	13003
	-

	99.0 
	324.8 
	0.09 
	0.36 
	0.20 
	454 
	0.13 
	8.00 
	0.04 
	0.85 
	0.89 
	40 
	4 
	15 
	0.22 
	5.62 
	5.84 

	High Ings 
	High Ings 
	13003
	-

	100.0 
	328.1 
	0.13 
	0.62 
	0.18 
	458 
	0.24 
	8.30 
	0.07 
	1.39 
	1.46 
	42 
	2 
	16 
	0.23 
	2.21 
	2.44 

	High Ings 
	High Ings 
	13003
	-

	103.6 
	339.9 
	0.16 
	0.60 
	0.21 
	435 
	0.49 
	7.40 
	0.09 
	1.04 
	1.13 
	53 
	13 
	43 
	0.20 
	0.04 
	0.25 

	High Ings 
	High Ings 
	13003
	-

	105.0 
	344.5 
	0.24 
	1.22 
	0.17 
	463 
	0.18 
	9. 
	0.13 
	1.76 
	1.89 
	65 
	5 
	10 
	0.27 
	4.85 
	5.12 

	High Ings 
	High Ings 
	13003
	-

	167.5 
	549.5 
	0.11 
	0.43 
	0.20 
	460 
	0.25 
	11.00 
	0.06 
	1.25 
	1.31 
	33 
	5 
	19 
	0.30 
	2.84 
	3.14 

	High Ings 
	High Ings 
	13003
	-

	169.0 
	554.5 
	0.08 
	0.42 
	0.16 
	463 
	0.10 
	4.50 
	0.05 
	1.22 
	1.27 
	33 
	6 
	8 
	0.12 
	1.31 
	1.44 

	High Ings 
	High Ings 
	13003
	-

	217.0 
	711.9 
	0.21 
	1.21 
	0.15 
	468 
	0.16 
	9.00 
	0.13 
	2.39 
	2.52 
	48 
	4 
	6 
	0.25 
	5.18 
	5.43 

	High Ings 
	High Ings 
	13003
	-

	219.0 
	718.5 
	0.29 
	1.10 
	0.21 
	466 
	0.18 
	9. 
	0.13 
	1.94 
	2.07 
	53 
	4 
	9 
	0.27 
	7.06 
	7.33 

	High 
	High 
	13003
	-

	219.3 
	719.5 
	0.34 
	1.78 
	0.16 
	468 
	0.18 
	9.00 
	0.19 
	2.61 
	2.80 
	64 
	4 
	6 
	0.25 
	7.36 
	7.62 


	Well 
	Well 
	Well 
	BGS sample number 
	Depth (m) 
	Depth (ft) 
	S1 (mg/g) 
	S2 (mg/g) 
	PI 
	Tmax (°C) 
	S3 (mg/g) 
	S3' (mg/g) 
	PC (%) 
	RC (%) 
	TOC (%) 
	HI 
	OICO 
	OI 
	pyroMINC (%) 
	oxiMINC (%) 
	MINC (%) 

	Ings+A87 
	Ings+A87 

	Long Eaton 
	Long Eaton 
	13003-0052 
	5871 
	0.18 
	0.37 
	0.32 
	464 
	0.30 
	7.20 
	0.06 
	1.49 
	1.55 
	24 
	3 
	19 
	0.20 
	0.68 
	0.88 

	Long Eaton 
	Long Eaton 
	13003-0053 
	5880 
	0.03 
	0.05 
	0.40 
	461 
	0.25 
	6.40 
	0.01 
	0.63 
	0.64 
	8 
	5 
	39 
	0.17 
	0.12 
	0.30 

	Long Eaton 
	Long Eaton 
	13003-0054 
	5885 
	0.13 
	0.28 
	0.32 
	469 
	0.22 
	5.80 
	0.04 
	1.38 
	1.42 
	20 
	1 
	15 
	0.16 
	0.28 
	0.44 

	Long Eaton 
	Long Eaton 
	13003
	-

	5892 
	0.19 
	0.38 
	0.34 
	465 
	0.37 
	8.50 
	0.06 
	1.48 
	1.54 
	25 
	5 
	24 
	0.23 
	1.91 
	2.14 

	Long Eaton 
	Long Eaton 
	13003-0056 
	5895 
	0.12 
	0.30 
	0.30 
	466 
	0.29 
	6.70 
	0.05 
	1.41 
	1.46 
	21 
	4 
	20 
	0.18 
	0.62 
	0.81 

	Long Eaton 
	Long Eaton 
	13003-0057 
	5898 
	0.12 
	0.34 
	0.26 
	468 
	0.30 
	7.20 
	0.05 
	1.48 
	1.53 
	22 
	1 
	20 
	0.20 
	0.67 
	0.87 

	Long Eaton 
	Long Eaton 
	13003-0058 
	5901 
	0.04 
	0.13 
	0.25 
	478 
	0.16 
	4.40 
	0.02 
	0.79 
	0.81 
	16 
	4 
	20 
	0.12 
	0.03 
	0.15 

	Nooks Farm 
	Nooks Farm 
	13003-0059 
	1401 
	0.08 
	0.24 
	0.25 
	440 
	0.21 
	4.30 
	0.04 
	0.56 
	0.60 
	40 
	10 
	35 
	0.12 
	0.57 
	0.68 

	Nooks Farm 
	Nooks Farm 
	13003
	-

	1410 
	0.28 
	0.70 
	0.29 
	449 
	0.10 
	1.20 
	0.09 
	1.64 
	1.73 
	40 
	2 
	6 
	0.04 
	0.00 
	0.04 

	Nooks Farm 
	Nooks Farm 
	13003-0061 
	1417 
	0.23 
	0.89 
	0.21 
	454 
	0.12 
	2.20 
	0.10 
	1.17 
	1.27 
	70 
	2 
	9 
	0.06 
	0.00 
	0.06 

	Nooks Farm 
	Nooks Farm 
	13003-0062 
	1418 
	0.35 
	0.89 
	0.28 
	447 
	0.12 
	1.20 
	0.11 
	1.84 
	1.95 
	46 
	6 
	6 
	0.03 
	0.00 
	0.04 

	Nooks Farm 
	Nooks Farm 
	13003-0063 
	1429 
	0.25 
	0.62 
	0.29 
	447 
	0.08 
	0.90 
	0.08 
	1.13 
	1.21 
	51 
	6 
	7 
	0.03 
	0.00 
	0.03 

	Nooks Farm 
	Nooks Farm 
	13003-0064 
	1432 
	0.32 
	0.39 
	0.45 
	446 
	0.04 
	0.60 
	0.07 
	0.60 
	0.67 
	58 
	3 
	6 
	0.02 
	0.00 
	0.02 

	Nooks Farm 
	Nooks Farm 
	13003
	-

	1450 
	0.30 
	0.81 
	0.27 
	445 
	0.21 
	1.90 
	0.11 
	2.08 
	2.19 
	37 
	3 
	10 
	0.06 
	0.02 
	0.08 

	Nooks Farm 
	Nooks Farm 
	13003-0066 
	1519 
	0.23 
	0.48 
	0.33 
	442 
	0.24 
	1.90 
	0.08 
	1.86 
	1.94 
	25 
	9 
	12 
	0.05 
	0.03 
	0.08 

	Nooks Farm 
	Nooks Farm 
	13003-0067 
	1531 
	0.19 
	0.45 
	0.29 
	449 
	0.08 
	0.80 
	0.06 
	1.41 
	1.47 
	31 
	3 
	5 
	0.03 
	0.03 
	0.05 

	Old Dalby 
	Old Dalby 
	13003-0068 
	1390.6 
	4562.3 
	0.91 
	5.46 
	0.14 
	436 
	0.27 
	6.70 
	0.55 
	2.18 
	2.73 
	200 
	1 
	10 
	0.19 
	2.67 
	2.86 

	Old Dalby 
	Old Dalby 
	13003-0069 
	1394.3 
	4574.5 
	0.97 
	4.13 
	0.19 
	433 
	0.47 
	7.80 
	0.46 
	3.07 
	3.53 
	117 
	6 
	13 
	0.22 
	0.28 
	0.50 

	Old Dalby 
	Old Dalby 
	13003
	-

	1398.5 
	4588.3 
	0.80 
	4.70 
	0.15 
	434 
	0.41 
	6.00 
	0.48 
	2.58 
	3.06 
	154 
	5 
	13 
	0.17 
	0.19 
	0.36 

	Old Dalby 
	Old Dalby 
	13003-0071 
	1404.6 
	4608.3 
	1.79 
	9.63 
	0.16 
	432 
	0.45 
	9.60 
	0.98 
	4.14 
	5.12 
	188 
	4 
	9 
	0.27 
	1.10 
	1.38 

	Old Dalby 
	Old Dalby 
	13003-0072 
	1437.5 
	4716.2 
	1.61 
	11.10 
	0.13 
	435 
	0.43 
	5.50 
	1.09 
	4.56 
	5.65 
	196 
	4 
	8 
	0.16 
	0.21 
	0.37 

	Old Dalby 
	Old Dalby 
	13003-0073 
	1442.5 
	4732.6 
	1.12 
	6.05 
	0.16 
	434 
	0.24 
	9.30 
	0.61 
	1.94 
	2.55 
	237 
	1 
	9 
	0.26 
	7.46 
	7.72 

	Old Dalby 
	Old Dalby 
	13003-0074 
	1447.8 
	4750.0 
	0.80 
	4.79 
	0.14 
	436 
	0.42 
	9.50 
	0.49 
	2.05 
	2.54 
	189 
	5 
	17 
	0.27 
	1.08 
	1.35 

	Old Dalby 
	Old Dalby 
	13003
	-

	1450.8 
	4759.8 
	0.93 
	6.48 
	0.13 
	438 
	0.24 
	3.10 
	0.64 
	2.76 
	3.40 
	191 
	4 
	7 
	0.09 
	0.04 
	0.13 

	Old Dalby 
	Old Dalby 
	13003-0076 
	1455.0 
	4773.6 
	1.45 
	7.84 
	0.16 
	436 
	0.33 
	9.70 
	0.79 
	2.39 
	3.18 
	247 
	1 
	10 
	0.28 
	4.86 
	5.14 

	Ratcliffe on 
	Ratcliffe on 
	13003-0077 
	271.7 
	891.4 
	0.51 
	27.44 
	0.02 
	434 
	0.53 
	1.90 
	2.38 
	6.18 
	8.56 
	321 
	6 
	6 
	0.08 
	0.02 
	0.10 


	Well 
	Well 
	Well 
	BGS sample number 
	Depth (m) 
	Depth (ft) 
	S1 (mg/g) 
	S2 (mg/g) 
	PI 
	Tmax (°C) 
	S3 (mg/g) 
	S3' (mg/g) 
	PC (%) 
	RC (%) 
	TOC (%) 
	HI 
	OICO 
	OI 
	pyroMINC (%) 
	oxiMINC (%) 
	MINC (%) 

	Soar 
	Soar 

	Ratcliffe on Soar 
	Ratcliffe on Soar 
	13003-0078 
	275.0 
	902.2 
	0.50 
	33.51 
	0.01 
	0.34 
	1.60 
	2.86 
	3.87 
	6.73 
	498 
	6 
	5 
	0.06 
	0.03 
	0.09 

	435 
	435 

	Ratcliffe on Soar 
	Ratcliffe on Soar 
	13003-0079 
	278.2 
	912.7 
	1.09 
	14.07 
	0.07 
	0.62 
	11.20 
	1.31 
	3.28 
	4.59 
	307 
	7 
	14 
	0.33 
	0.33 
	0.65 

	423 
	423 

	Ratcliffe on Soar 
	Ratcliffe on Soar 
	13003
	-

	281.7 
	924.2 
	0.76 
	9.74 
	0.07 
	0.50 
	9.40 
	0.91 
	2.32 
	3.23 
	302 
	6 
	15 
	0.27 
	1.26 
	1.53 

	424 
	424 

	Ratcliffe on Soar 
	Ratcliffe on Soar 
	13003-0081 
	285.0 
	935.0 
	0.96 
	13.47 
	0.07 
	0.62 
	9.40 
	1.25 
	3.31 
	4.56 
	295 
	7 
	14 
	0.27 
	0.55 
	0.83 

	422 
	422 

	Ratcliffe on Soar 
	Ratcliffe on Soar 
	13003-0082 
	287.5 
	943.2 
	0.21 
	2.92 
	0.07 
	0.33 
	3.70 
	0.30 
	2.42 
	2.72 
	107 
	14 
	12 
	0.11 
	0.01 
	0.12 

	416 
	416 

	Ratcliffe on Soar 
	Ratcliffe on Soar 
	13003-0083 
	289.5 
	949.8 
	0.25 
	4.44 
	0.05 
	0.56 
	12.60 
	0.43 
	3.66 
	4.09 
	109 
	11 
	14 
	0.35 
	0.25 
	0.60 

	422 
	422 

	Rempstone 
	Rempstone 
	13003-0084 
	665.0 
	2181.8 
	0.86 
	4.52 
	0.16 
	437 
	0.20 
	0.50 
	0.47 
	2.19 
	2.66 
	170 
	4 
	8 
	0.02 
	0.00 
	0.03 

	Rempstone 
	Rempstone 
	13003
	-

	665.3 
	2182.7 
	1.67 
	25.80 
	0.06 
	437 
	1.15 
	5.80 
	2.35 
	4.96 
	7.31 
	353 
	5 
	16 
	0.18 
	0.01 
	0.19 

	Rempstone 
	Rempstone 
	13003-0086 
	666.0 
	2185.0 
	1.58 
	28.53 
	0.05 
	438 
	2.11 
	25.30 
	2.59 
	4.70 
	7.29 
	391 
	6 
	29 
	0.70 
	0.01 
	0.71 

	Rempstone 
	Rempstone 
	13003-0087 
	667.0 
	2188.3 
	0.92 
	27.18 
	0.03 
	437 
	0.50 
	1.50 
	2.37 
	3.50 
	5.87 
	463 
	6 
	9 
	0.05 
	0.01 
	0.06 

	Rempstone 
	Rempstone 
	13003-0088 
	668.0 
	2191.6 
	0.10 
	0.10 
	0.50 
	431 
	0.74 
	12.30 
	0.05 
	1.72 
	1.77 
	6 
	10 
	42 
	0.34 
	7.30 
	7.64 

	Roddlesworth 
	Roddlesworth 
	13003-0089 
	4226 
	0.09 
	0.06 
	0.62 
	508 
	0.72 
	12.10 
	0.04 
	1.71 
	1.75 
	3 
	9 
	41 
	0.33 
	7.38 
	7.71 

	Roddlesworth 
	Roddlesworth 
	13003
	-

	4239 
	0.15 
	0.07 
	0.69 
	481 
	0.16 
	5.20 
	0.03 
	0.16 
	0.19 
	37 
	5 
	84 
	0.14 
	11.07 
	11.21 

	Roddlesworth 
	Roddlesworth 
	13003-0091 
	4250 
	0.01 
	0.00 
	0.99 
	494 
	0.12 
	2.60 
	0.00 
	0.07 
	0.07 
	0 
	29 
	171 
	0.07 
	12.07 
	12.14 

	Roddlesworth 
	Roddlesworth 
	13003-0092 
	4256 
	0.12 
	0.06 
	0.66 
	415 
	0.29 
	9.20 
	0.03 
	0.23 
	0.26 
	23 
	19 
	112 
	0.25 
	10.51 
	10.76 

	Roddlesworth 
	Roddlesworth 
	13003-0093 
	4268 
	0.00 
	0.00 
	0.67 
	494 
	0.09 
	2.00 
	0.00 
	0.07 
	0.07 
	0 
	14 
	129 
	0.05 
	12.44 
	12.49 

	Roddlesworth 
	Roddlesworth 
	13003-0094 
	4277 
	0.30 
	0.15 
	0.66 
	494 
	0.22 
	8.00 
	0.05 
	0.33 
	0.38 
	39 
	5 
	58 
	0.22 
	9.73 
	9.96 

	Roddlesworth 
	Roddlesworth 
	13003
	-

	4281 
	0.02 
	0.02 
	0.48 
	474 
	0.15 
	1.90 
	0.01 
	0.06 
	0.07 
	29 
	43 
	214 
	0.05 
	11.88 
	11.94 

	Swinden 1 
	Swinden 1 
	13003-0096 
	30.0 
	98.4 
	0.28 
	0.66 
	0.30 
	447 
	0.22 
	8.80 
	0.09 
	1.55 
	1.64 
	40 
	8 
	13 
	0.24 
	4.58 
	4.83 

	Swinden 1 
	Swinden 1 
	13003-0097 
	33.0 
	108.3 
	0.27 
	0.70 
	0.28 
	458 
	0.16 
	7.90 
	0.09 
	1.64 
	1.73 
	40 
	8 
	9 
	0.22 
	3.10 
	3.32 

	Swinden 1 
	Swinden 1 
	13003-0098 
	38.5 
	126.3 
	0.25 
	0.67 
	0.27 
	457 
	0.16 
	7.10 
	0.09 
	1.65 
	1.74 
	39 
	8 
	9 
	0.20 
	3.13 
	3.32 

	Swinden 1 
	Swinden 1 
	13003-0099 
	40.5 
	132.9 
	0.27 
	0.58 
	0.32 
	456 
	0.15 
	8.00 
	0.08 
	1.42 
	1.50 
	39 
	8 
	10 
	0.22 
	3.11 
	3.33 

	Swinden 1 
	Swinden 1 
	13003
	-

	44.7 
	146.7 
	0.24 
	0.67 
	0.27 
	455 
	0.17 
	8.50 
	0.09 
	1.55 
	1.64 
	41 
	5 
	10 
	0.23 
	1.92 
	2.16 

	Swinden 1 
	Swinden 1 
	13003-0101 
	48.8 
	160.1 
	0.25 
	0.74 
	0.25 
	458 
	0.16 
	7.60 
	0.09 
	2.21 
	2.30 
	32 
	6 
	7 
	0.21 
	2.70 
	2.91 


	Well 
	Well 
	Well 
	BGS sample number 
	Depth (m) 
	Depth (ft) 
	S1 (mg/g) 
	S2 (mg/g) 
	PI 
	Tmax (°C) 
	S3 (mg/g) 
	S3' (mg/g) 
	PC (%) 
	RC (%) 
	TOC (%) 
	HI 
	OICO 
	OI 
	pyroMINC (%) 
	oxiMINC (%) 
	MINC (%) 

	Swinden 1 
	Swinden 1 
	13003-0102 
	621.2 
	2038.1 
	0.04 
	0.23 
	0.15 
	580 
	0.20 
	7.70 
	0.03 
	2.49 
	2.52 
	9 
	4 
	8 
	0.21 
	4.28 
	4.50 

	Swinden 1 
	Swinden 1 
	13003-0103 
	623.0 
	2044.0 
	0.03 
	0.03 
	0.46 
	581 
	0.18 
	8.70 
	0.01 
	0.83 
	0.84 
	4 
	5 
	21 
	0.24 
	7.35 
	7.58 

	Swinden 1 
	Swinden 1 
	13003-0104 
	626.8 
	2056.4 
	0.03 
	0.04 
	0.44 
	331 
	0.14 
	10.60 
	0.01 
	1.28 
	1.29 
	3 
	5 
	11 
	0.29 
	3.96 
	4.25 

	Swinden 1 
	Swinden 1 
	13003-0105 
	629.5 
	2065.3 
	0.04 
	0.08 
	0.31 
	595 
	0.23 
	8.90 
	0.02 
	1.36 
	1.38 
	6 
	4 
	17 
	0.24 
	6.24 
	6.48 

	Wessenden 1 
	Wessenden 1 
	13003-0106 
	3505 
	0.01 
	0.00 
	0.98 
	494 
	0.19 
	11.40 
	0.01 
	0.29 
	0.30 
	0 
	20 
	63 
	0.31 
	2.45 
	2.76 

	Wessenden 1 
	Wessenden 1 
	13003-0107 
	3510 
	0.02 
	0.00 
	1.00 
	494 
	0.20 
	10.80 
	0.01 
	0.25 
	0.26 
	0 
	15 
	77 
	0.29 
	4.53 
	4.83 

	Wessenden 1 
	Wessenden 1 
	13003-0108 
	3512 
	0.01 
	0.00 
	1.00 
	494 
	0.14 
	7.40 
	0.01 
	0.26 
	0.27 
	0 
	19 
	52 
	0.20 
	4.09 
	4.29 

	Wessenden 1 
	Wessenden 1 
	13003-0109 
	3513 
	0.01 
	0.00 
	1.00 
	494 
	0.18 
	3.00 
	0.01 
	0.29 
	0.30 
	0 
	10 
	60 
	0.08 
	0.46 
	0.54 


	Non-released wells are in red. BGS boreholes are in bold italics. Note that all depths of subsea, not downhole relative to KB. Conf. = confidential 
	Appendix C: Stratigraphic data from key wells penetrating the Bowland-Hodder shales in central Britain 
	Appendix C: Stratigraphic data from key wells penetrating the Bowland-Hodder shales in central Britain 
	Appendix C: Stratigraphic data from key wells penetrating the Bowland-Hodder shales in central Britain 

	Well abbreviation 
	Well abbreviation 
	-

	Well name 
	Year spudded 
	KB elevation (ft above MSL) 
	GL elevation (ft above MSL) (or DTM) 
	Base Permian (ft below MSL) (or outcrop) 
	Top Bowland-Hodder unit (ft below MSL) 
	Base Bowland-Hodder unit (ft below MSL) 
	Bowland-Hodder unit thickness  (ft) 
	Net shale upper unit (ft) 

	ALP 
	ALP 
	Alport 1 
	1939 
	930 
	(928) 
	(Nam) 
	-910 
	1630+ 
	>2540 
	?1000 

	ASK 
	ASK 
	Askern 1 
	1957 
	25.4 
	(25) 
	1033 
	4595 
	4787.6+ 
	>193 
	87 

	BECH 
	BECH 
	Becconsall 1 
	2011 
	27 
	(19) 
	conf. 
	conf. 
	conf. 
	conf. 
	conf. 

	BLE 
	BLE 
	Blacon East 1 
	1981 
	47 
	32 
	1318 
	4214 
	7387+ 
	>3173 
	819 

	BOS 
	BOS 
	Bosley 1 
	1986 
	1332.4 
	1308.7 
	(Nam) 
	-223.5 
	4994 
	5217.5 
	408 

	BOT 
	BOT 
	Bothamsall 1 
	1957 
	117.3 
	(125) 
	860 
	3682.7 
	4566.7+ 
	>884 
	412 

	BOU 
	BOU 
	Boulsworth 1 
	1963 
	1408 
	1385 
	(Nam) 
	1752 
	3448 
	1696 
	98 

	BRA 
	BRA 
	Bramley Moor 1 
	1987 
	725 
	714 
	(West) 
	2376 
	3208+ 
	>662 
	527 

	CAL 
	CAL 
	Calow 1 
	1957 
	420 
	(413) 
	(West) 
	1860 
	3299+ 
	>1439 
	475 

	CLO 
	CLO 
	Cloughton 1 
	1986 
	573 
	(542) 
	5969 
	8535 
	9527+ 
	>992 
	317 

	CRA 
	CRA 
	Crayke 1 
	1964 
	161 
	(156) 
	2653 
	3479 
	4339+ 
	>860 
	? 

	CRO 
	CRO 
	Croxteth 1 
	1953 
	84 
	(79) 
	1579 
	3216 
	4132+ 
	>916 
	419 

	DUF 
	DUF 
	Duffield 
	1966 
	202 
	(216) 
	(Nam) 
	-71 
	3251+ 
	>3322 
	764 

	DUG 
	DUG 
	Duggleby 1 
	1990 
	673 
	650 
	4869 
	8393 
	9351+ 
	>958 
	324 

	EAK 
	EAK 
	Eakring 146 
	1944 
	342 
	(341) 
	942 
	1988 
	4728 
	2740 
	?185 

	EDA 
	EDA 
	Edale 1 
	1937 
	c.850 
	(845) 
	(Nam) 
	-850 
	-93+ 
	>757 
	? 

	EGM 
	EGM 
	Egmanton 68 
	1980 
	126 
	112.9 
	1515 
	3676 
	6041.9 
	2365.9 
	?10 

	ELL 
	ELL 
	Ellenthorpe 1 
	1945 
	60 
	(46) 
	1181 
	1181 
	3538+ 
	>2357 
	? 

	ERB 
	ERB 
	Erbistock 1 
	1986 
	208 
	184 
	(West) 
	3793 
	5986+ 
	>2193 
	236 

	FLE 
	FLE 
	Fletcher Bank 1 
	1958 
	857 
	(837) 
	(Nam) 
	3400 
	4658+ 
	>1258 
	288 

	FOR1 
	FOR1 
	Formby 1 
	1940 
	18 
	(20) 
	5862 
	7122 
	7662+ 
	>540 
	73 

	FOR4 
	FOR4 
	Formby 4 
	1949 
	36 
	(32) 
	2742 
	3144 
	3844+ 
	>700 
	210 

	GAI 
	GAI 
	Gainsborough 2 
	1959 
	104.3 
	(87) 
	2380 
	5816 
	6154.7+ 
	>338.7 
	0 

	GRA 
	GRA 
	Grange Hill 1 
	2011 
	73 
	47.5 
	conf. 
	conf. 
	conf. 
	conf. 
	conf. 

	GRO 
	GRO 
	Grove 3 
	1981 
	210.4 
	192 
	1766 
	4909 
	7253 
	2344 
	90 

	GUN 
	GUN 
	Gun Hill 1 
	1938 
	1157 
	1142 
	(Nam) 
	-862 
	2008 
	2870 
	510 

	HAN 
	HAN 
	Hanbury 1 
	1990 
	467 
	452 
	1148 
	2382 
	3949 
	1567 
	110 

	HATM 
	HATM 
	Hatfield Moors 3 
	1983 
	29 
	12 
	1341 
	5471 
	5971+ 
	>500 
	No logs 

	HAT 
	HAT 
	Hathern 1 
	1954 
	161 
	(157) 
	300 
	657 
	1602 
	945 
	93 

	HEA 
	HEA 
	Heath 1 
	1919 
	516 
	(519) 
	(West) 
	3034 
	3484+ 
	>450 
	?390 

	HES 
	HES 
	Hesketh 1 
	1990 
	41 
	27 
	2126 
	2126 
	4202+ 
	>2076 
	798 

	HEY 
	HEY 
	Heywood 1 
	1984 
	393.8 
	377.7 
	(West) 
	4147.9 
	4917.9+ 
	>770 
	180 

	HIG 
	HIG 
	High Hutton 1 
	1987 
	171 
	151 
	3908 
	6854 
	8829+ 
	>1975 
	562 

	HOL 
	HOL 
	Holme Chapel 1 
	1974 
	891 
	871 
	(West) 
	3964 
	5566 
	1602 
	52 

	ILK 
	ILK 
	Ilkeston 1 
	1985 
	222.37 
	208.6 
	(West) 
	2335.7 
	3386.7+ 
	>1051 
	960 

	INC 
	INC 
	Ince Marshes 1 
	2011 
	47.2 
	33 
	conf. 
	conf. 
	conf. 
	conf. 
	conf. 

	IRO 
	IRO 
	Ironville 5 
	1984 
	303.5 
	290.4 
	(West) 
	1439 
	3452.5 
	2013.5 
	95 

	KIN 
	KIN 
	Kinoulton 1 
	1985 
	147.4 
	130.9 
	932 
	3742.6 
	4741+ 
	>998.4 
	369 

	KRM 
	KRM 
	Kirby Misperton 1 
	1985 
	118 
	98 
	5221 
	6415 
	11013 
	4598 
	868 

	KRS 
	KRS 
	Kirk Smeaton 1 
	1985 
	123.7 
	107.6 
	2.3 
	4715.5 
	5243.7 
	528.2 
	381 

	LONC 
	LONC 
	Long Clawson 1 
	1943 
	178 
	(178) 
	1222 
	4022 
	4527+ 
	>505 
	85 

	LONE 
	LONE 
	Long Eaton 1 
	1988 
	129.7 
	113 
	382 
	382 
	8410 
	8028 
	0 (eroded) 

	MIL 
	MIL 
	Milton Green 1 
	1965 
	63 
	52.4 
	(West) 
	3801 
	4858 
	1057 
	505 


	Well abbreviation 
	Well abbreviation 
	Well abbreviation 
	-

	Well name 
	Year spudded 
	KB elevation (ft above MSL) 
	GL elevation (ft above MSL) (or DTM) 
	Base Permian (ft below MSL) (or outcrop) 
	Top Bowland-Hodder unit (ft below MSL) 
	Base Bowland-Hodder unit (ft below MSL) 
	Bowland-Hodder unit thickness  (ft) 
	Net shale upper unit (ft) 

	NOO 
	NOO 
	Nooks Farm 1 
	1982 
	997 
	980 
	(Nam) 
	-517 
	2623+ 
	>3140 
	824 

	NORM 
	NORM 
	Normanby 1 
	1985 
	63.7 
	43.8 
	2642 
	6884 
	7347.7+ 
	>463.7 
	308 

	OLD 
	OLD 
	Old Dalby 1 
	1988 
	323 
	305.8 
	1128 
	3587 
	4532+ 
	>945 
	268 

	PRH 
	PRH 
	Preese Hall 1 
	2010 
	25.5 
	16.7 
	conf. 
	conf. 
	conf. 
	conf. 
	conf. 

	RAN 
	RAN 
	Ranton 1 
	1980 
	407 
	394 
	1913 
	4209 
	5428 
	1219 
	?0 

	RAT 
	RAT 
	Ratcliffe-on-Soar 1 
	1986 
	124.8 
	108.1 
	696 
	1015.6 
	5913.2+ 
	>4895 
	198 

	REM 
	REM 
	Rempstone 1 
	1985 
	273.9 
	259.8 
	620.1 
	1912.1 
	3437 
	1524.9 
	297 

	ROD 
	ROD 
	Roddlesworth 1 
	1987 
	774 
	754 
	(Nam) 
	3369 
	7332 
	3963 
	44 

	ROO 
	ROO 
	Roosecote 
	1970 
	121.4 
	(127) 
	397.4 
	1615 
	2501.6+ 
	>886.6 
	420 

	SCA 
	SCA 
	Scaftworth 2 
	1982 
	45.6 
	27.2 
	1062 
	6814.2 
	7585.6+ 
	>771.4 
	474 

	SES 
	SES 
	Sessay 1 
	1988 
	95 
	80 
	1225 
	2164 
	5405+ 
	>3241 
	331 

	SOU 
	SOU 
	South Leverton 1 
	1960 
	37.3 
	(29) 
	1913.7 
	4802.7 
	5087.7+ 
	>285 
	124 

	STR 
	STR 
	Strelley 1 
	1986 
	436.8 
	422.1 
	-376 
	2412.6 
	4320.4+ 
	>1907.8 
	205 

	SWI 
	SWI 
	Swinden 1 
	1978 
	462.6 
	456 
	(Tourn) 
	-
	-
	>2310¹ 
	-

	THI 
	THI 
	Thistleton 1 
	1987 
	75 
	15 
	2964 
	4019 
	6945+ 
	>2926 
	2096 

	THO 
	THO 
	Tholthorpe 1 
	1965 
	80.4 
	(75) 
	1489.6 
	2609.6 
	2969.6+ 
	>360 
	? 

	TOR 
	TOR 
	Torksey 4 
	1975 
	47.2 
	34.3 
	2323 
	5598.8 
	6019.8+ 
	>421 
	279 

	WEE 
	WEE 
	Weeton 1 
	1984 
	166.8 
	141.7 
	(Nam) 
	909 
	4886 
	3977 
	246 

	WES 
	WES 
	Wessenden 1 
	1987 
	1631.5 
	1620 
	(Nam) 
	-131 
	368 
	499 
	117 

	WHM 
	WHM 
	Whitmoor 1 
	1966 
	1024 
	(1018) 
	(Nam) 
	2096 
	3426 
	1330 
	140 

	WID 
	WID 
	Widmerpool 1 
	1945 
	266 
	(261) 
	754 
	2234 
	5934+ 
	>3700 
	?3700 


	NB These data present the interpretation used in this study. ¹ >2310 ft of pre Bowland-Hodder unit shales. 
	Other wells 
	Well abbreviation 
	Well abbreviation 
	Well abbreviation 
	-

	Well name 
	Well abbreviation 
	-

	Well name 

	ALD 
	ALD 
	Aldfield 1 
	MAL1 
	Malton 1 

	APL 
	APL 
	Apley 1 
	MAL4 
	Malton 4 

	BARD 
	BARD 
	Bardney 1 
	MAR 
	Marishes 1 

	BART 
	BART 
	Barton 1 
	NET1 
	Nettleham 1 

	BEC 
	BEC 
	Beckering 1 
	NET2 
	Nettleham 2 (B2) 

	BIS 
	BIS 
	Biscathorpe 1 
	NEW 
	Newton Mulgrave 1 

	BIT 
	BIT 
	Bittern's Wood 1 
	NORG 
	North Greetwell 1 

	BLW 
	BLW 
	Blacon West 1 
	NOR 
	Northwood 1 

	BRAF 
	BRAF 
	Brafferton 1 
	PIC 
	Pickering 1 

	BRI 
	BRI 
	Brigg 1 
	PLU 
	Plungar 8A 

	BRM 
	BRM 
	Broomfleet 1 
	PRE 
	Prees 1 

	BRO 
	BRO 
	Broughton B1 
	RAL 
	Ralph Cross 1 

	BUT 
	BUT 
	Butterwick 1 
	ROB 
	Robin Hood's Bay 1 

	CHE 
	CHE 
	Cherry Willingham 1 
	ROS 
	Rosedale 1 

	CLE 
	CLE 
	Cleveland Hills 1 
	RUD 
	Rudston 1 

	COL 
	COL 
	Cold Hanworth 1 
	SAL 
	Saltfleetby 3 

	DUN 
	DUN 
	Dunholme 1 
	SCAL 
	Scaling 1 

	EGT 
	EGT 
	Egton High Moor 1 
	SCU 
	Scupholme 1 

	ELS 
	ELS 
	Elswick 1 
	SEA 
	Seal Sands 

	ESK12 
	ESK12 
	Eskdale 12 
	SPA 
	Spaldington 1 

	Well abbreviation 
	Well abbreviation 
	-

	Well name 
	Well abbreviation 
	-

	Well name 

	FOR 
	FOR 
	Fordon 1 
	STA 
	Stainton 1 

	FOR5 
	FOR5 
	Formby F5 
	TET 
	Tetney Lock 1 

	GLA 
	GLA 
	Glanford 1 
	WEL 
	Welton 1 

	HAR 
	HAR 
	Harlsey 1 
	WELW 
	Welton West 1 

	HEAF 
	HEAF 
	Heath Farm 1 
	WHEL 
	Wheldrake 1 

	HEM 
	HEM 
	Hemswell 1 
	WHE 
	Whenby 1 

	HUN 
	HUN 
	Hunmanby 1 
	WHI 
	Whitwell on the Hill 1 

	KED 
	KED 
	Keddington 1Z 

	KEL 
	KEL 
	Kelstern 1 

	KIR 
	KIR 
	Kirkleatham 1 

	KNU 
	KNU 
	Knutsford 1 

	LAN 
	LAN 
	Langtoft 1 

	LOC2 
	LOC2 
	Lockton 3 

	LOCE 
	LOCE 
	Lockton East 1 


	Appendix E: Thermal modelling of the Pennine Basin, central Britain 
	Summary 
	This report describes a thermal modelling study covering boreholes across the Pennine Basin, central Britain, from the East Irish Sea Basin, across the Bowland Basin, through the Cheshire Basin and the Widmerpool Trough to the Gainsborough Trough. It forms part of a wider study to assess the extent of the region’s shale gas resource. 
	The regional structural history of the area includes Early Carboniferous rifting that resulted in a period of fault-controlled deposition followed by a Late Carboniferous phase of regional subsidence. This is reflected by widespread marine deposition during the Visean, with shallowing marine conditions during deposition of the Millstone Grit Group during the Namurian and shallow marine/paralic delta top deposition of Coal Measures and Warwickshire Group during the Westphalian. Subsequent regional uplift and
	Generally, the present-day heat flow figures calculated from available boreholes are quite modest (50 – 54 mWm), however, in the past, during rifting, this would be expected to have been higher, indeed the models in the depocentres of these basins imply heat flows as high as 78 mWmduring Early Carboniferous rifting and 65 mWmduring Cretaceous uplift. 
	-2
	-2 
	-2 

	The strata penetrated by each borehole were entered into a 1-D model. The eroded thicknesses of Carboniferous strata for the 1-D models were estimated from surrounding boreholes and published sources in order to estimate the model layers needed to represent these eroded sediments. These varied from a few hundred metres to over 1000 m of sediment removed during Variscan uplift and erosion. Some Permian – Triassic deposits were present in the boreholes used in this study; where these sediments had been remove
	Finally,  these 1-D models were combined to generate three 2-D model sections, these are not as sophisticated as the 1-D models as simplification is required in order to allow the model to run, however, they give a useful overview of the boreholes in context of the depositional basins which contain them. For the 2-D sections, it was assumed that the strata layers have a uniform lithology across each section, the constitution of which was based on the 1-D models. 
	1. Introduction 
	BasinMod(Platte River Software, Inc.) was used to model the maturity of sediments in selected boreholes in the Pennine Basin. The final 1-D models may be used alongside geological assessments of the basin to consider the geological history of the Pennine Basin from the Carboniferous to the present day. 
	TM 

	The approach taken was to model the boreholes individually using BasinMod1-D as these models allow entry of detailed lithology and modelling of the heat flow to achieve the best fit to the vitrinite reflectance (VR) data. These 1-D models were then used to model the burial history and maturity along a 2-D profile between boreholes using interpreted seismic data to complete the section. 
	TM 

	The VR data, 1-D and 2-D models give an understanding of the maturity of the basin and indicate which strata have reached sufficient maturity for any organic material which is present to generate oil or gas. 
	2. Modelling 
	This report describes the results of 1-D thermal models in the Pennine Basin. BasinMod(Platte River Associates, Inc.) was used to model the maturity of sediments in selected boreholes then these boreholes were integrated into three 2-D sections. The report considers the region area through the Carboniferous to the present day, concentrating on the Bowland Shale where maturity data are available. 
	TM 

	boreholes such that the models would contribute to understanding the thermal maturity of these basins 
	The boreholes to be modelled were chosen based on availability of data (Table 1) and the location of the 
	(Figure 1). 

	The 1-D models and 2-D model presented here were produced using Platte River Associates Software BasinMod 1-D version 7.61 and BasinMod 2-D version 4.61. Borehole stratigraphy and rock properties were used to model compaction and temperature through burial over geological time. The modelled maturity and vitrinite reflectance maturity (VR) data were then compared graphically and used to refine the model until the best fit to the available data was achieved. Plots of the maturity, temperature vs. depth and vs
	BasinMod 1-D calculates heat flow curves based on the finite rifting model of Jarvis & McKenzie (1980). This assumes that in an extensional environment there is rapid initial subsidence due to crustal thinning associated with a thermal anomaly i.e., high heat flow. Unlike McKenzie’s earlier model, this one recognises that continental basin formation by extension takes a finite time. When crustal stretching ceases, heat is lost by vertical conduction and the slow decay of the heat flow leads to further subsi
	(stretching factor β≤ 2), the Jarvis & McKenzie (1980) model assumes that the thermal anomaly 
	develops and decays within about 60 Ma. 
	In order to match the model to the recorded vitrinite data, estimates of the palaeo-heat flow and eroded sediments thicknesses are required. The thickness of sediment removed is estimated based on surrounding sediments and the VR data. The palaeo-heat flow is estimated based on known rifting events and the slope of the scattered VR point data. Boreholes with more complete VR data were used to supplement models where there were fewer VR data available. 
	Minor modifications were made to the Jarvis & McKenzie palaeo-heat flow curves to improve the fit of the model to the data. The modelled maturity was calibrated graphically against the maturity data for the borehole. The eroded sediment thickness was estimated using vitrinite reflectance (VR) and apatite fission track analysis (AFTA) where available. Palaeozoic stratigraphical ages were taken from the BGS online stratigraphical tables (Powell 2009 pers. comm., Gradstein et al. 2004 and ICS 2006). Lithology 
	The 2-D models were generated by combining results from the calibrated 1-D models. Seismic data was used to interpret the horizons between these wells and these profiles were then used to generate 2-D section models of basin maturity. Only faults that cut more than one horizon affect calculated model results. For simplicity the 2-D model the lithologies were assumed to be uniform across the basin. Initially the model was constructed using only the current sediment thickness. The model was ‘coupled’, 
	(i.e. the lines separating model layers were joined correctly such that the correct rock properties were contained within the appropriate model layers) and successfully run. This initial model was then modified to include the Variscan Unconformity and erosional surface. A simplified heat flow based on those developed for the 1-D models was used, with a high heat flow in the Carboniferous decreasing to present day levels. The broken lines above the Variscan Unconformity and current land surface indicate the 
	In general, the models fit the data well and are geologically reasonable. Using the more sophisticated and detailed 1-D models to produce a 2-D cross section was a successful approach. There is still potential to refine the 2-D model, for example, by varying lithologies across the basin. 
	3. Boreholes modelled 
	Logs and stratigraphic data are available in the BGS NGRC and archives. Vitrinite reflectance data were taken from published papers, confidential reports, PhD theses or new BGS analytical results (Smith et al. 2012). 
	The boreholes modelled for this report are given in Table 1. 

	Table 1: Boreholes modelled 
	WELL NAME 
	WELL NAME 
	WELL NAME 
	NUMBER 
	DRILLED DEPTH (m) 
	EASTING 
	NORTHING 
	COMMENTS (TD – total depth, VR – number of vitrinite reflectance data) 

	Irish Sea 
	Irish Sea 
	110/2b-10 
	2540.51 
	03°44’ 34°589’ W 
	53°50’ 38°157’ 
	Released well 16VR (confidential report) TD in Millstone Grit (Namurian C Yeadonian – Marsdenian) 

	Thistleton 1 
	Thistleton 1 
	SD33NE17 
	2139.69 
	339760 
	437000 
	Released well 16VR (Smith et al. 2012) TD in Bowland Shale (Brigantian – Pendleian) 

	Hesketh 1 
	Hesketh 1 
	SD42NW6 
	1295.4 
	343001 
	425197 
	Released well 3VR (Smith et al. 2012) TD in Lower Bowland Shale (Brigantian) 

	Upholland 1 
	Upholland 1 
	SD50SW20 
	1523.39 
	350440 
	402900 
	Released well 14 VR (Pearson & Russell, 2000) TD in Sabden Shale (Arnsbergian – Kinderscoutian) 

	Ince Marshes 1 
	Ince Marshes 1 
	1570 
	346211 
	376439 
	Confidential well 18 VR (courtesy of IGas Energy Plc.) TD in Craven Group 

	Blacon East 1 
	Blacon East 1 
	SJ36NE23 
	2265.88 
	337890 
	366860 
	Released well 7 VR (Smith et al. 2012) TD in Carboniferous limestone (Visean) 

	Knutsford 1 
	Knutsford 1 
	SJ77NW4 
	3045.7 
	370269 
	377851 
	Released well 4 VR (Pearson & Russell, 2000), 5 AFTA (Lewis et al. 1992) TD in Westphalian Coal Measures 

	Gun Hill 1 
	Gun Hill 1 
	SJ96SE18 
	904 
	397230 
	361820 
	Released well 12 VR (confidential report) TD in Carboniferous Limestone 

	Long Eaton 1 
	Long Eaton 1 
	SK43SE161 
	2752.34 
	446400 
	331660 
	Released well 8 VR (confidential report) TD in Craven Group (Chadian) 

	Ilkeston 1 
	Ilkeston 1 
	SK44NE47 
	1103.5 
	447537 
	345172 
	Released well 3 VR (confidential report) TD in Millstone Grit (Arnsbergian) 

	Grove 3 
	Grove 3 
	SK78SE30 
	2933.0 
	476155 
	381373 
	Released well 3 VR (Smith et al. 2012) TD in Early Palaeozoic phyllites with Visean (Courceyan) overlying 

	Gainsborough 2 
	Gainsborough 2 
	SK89SW2 
	1907.74 
	481774 
	390785 
	Released well 39 VR (confidential report) TD in Upper Bowland Shale (with basic igneous extrusive rock as lowest layer) 

	Kirk Smeaton 1 
	Kirk Smeaton 1 
	SE51NW40 
	1636.0 
	451142 
	416097 
	Released well 30 VR (confidential report) TD in Craven Group (Brigantian) 


	Figure
	Figure 1. Location of the study area, wells and lines of section 
	4. East Irish Sea – Craven Basin section 
	4.1 East Irish Sea geology 
	The oldest deposits penetrated by the boreholes in this study are of Namurian age. Seismic interpretation extends the 2-D model in this basin to the top of the Chadian in the Bowland-Hodder unit. The East Irish Sea Basin succession comprises Lower Bowland Shale deposited in a deep marine environment in the early Carboniferous (Rowley & White 1998). Rifting and regional extension during the Visean resulted in multiple faults showing syn-depositional deposition of thick marine sediments. Rifting ceased in the
	4.1.1 Well 110/02b-10 
	This offshore borehole penetrates Namurian to Quaternary sediments and has 16 vitrinite reflectance measurements. 
	An estimated 800 m of sediment was removed during the Variscan Orogeny and around 1200 m during the later erosional period during the Cretaceous uplift. This figure is in agreement with the estimated thickness of eroded Carboniferous strata in Rowley & White (1998). 
	A satisfactory fit to the data was achieved. The comparison of model maturity and maturity data is  Heat flow appears to have reached 73 mWmduring the late Carboniferous, resulting in temperatures of around 80ºC in the deepest Westphalian A strata during Carboniferous burial and 140ºC during deep Cretaceous burial. This model implies that the Westphalian A coals achieved a depth of burial of around 3.7 km during the Cretaceous, reaching higher temperatures than during the Carboniferous. A change in the grad
	shown in Figure 2c. 
	The heat flow model (Figure 2b) is fairly well constrained by the slope of the VR data 
	curve (Figure 2c).
	-2 

	4.2 Craven Basin geology 
	During the Devonian, Old Red Sandstone was deposited in a continental environment. In the early Visean, a marine transgression resulted in deposition of shallow marine sediments and water depths increased to deeper marine in the late Visean as the basin subsided as an asymmetrical southward-tilted graben along the Pendle Fault. The Bowland Shale was deposited in the final stages of Visean sedimentation starting in the Asbian. In the early Namurian, these seas shallowed until during the late Namurian – early
	Sills and dykes in this region are recorded to have ages of 296 ±15 and 302 ±20 Ma. 
	Carboniferous deposition was followed by uplift and erosion during the Variscan Orogeny. Following this uplift, the basin subsided and Permian and Triassic sediments were deposited in a major rift system. The Craven Basin (previously Bowland Basin or West Lancashire Basin) was contiguous with the East Irish Sea Basin and Cheshire Basin during the Carboniferous and Permian-Triassic (Rowley & White 1998) during regional subsidence and subsequent uplift. Preserved Permo-Triassic sediments are 1 km thick and lo
	The current heat flow in this basin is around 50 mWmbased on observations in the boreholes at Thornton Cleveley and Weeton Camp (Downing & Gray 1986), so it was assumed the present day heat flow in Thistleton 1 and Hesketh 1 is the same. 
	-2 

	Figure
	Figure 2. 110/2b-10 model, 2a (top) shows the depositional history and isotherms (isotherms are at 20°C intervals), the blue polygons at the top represent water depth, 2b (centre) shows the modelled palaeoheat flow and 2c (bottom) compares the modelled VR maturity and VR data. 
	-

	4.2.1 Thistleton 1 
	implies a low heat flow, but given the scatter of the data, and the heat flow models for the nearby Hesketh 1 and 110/2b-10, the palaeo-heat flow may actually have been higher and the thickness of eroded sediment, lower. However, despite uncertainty in the model, the VR data do indicate that the Bowland Shale reached the oil generation window in this borehole. 
	The 16 vitrinite data for Thistleton 1 have quite a broad scatter (Figure 3), the relatively gentle slope 

	The lower part of the Pendleian is offset from the upper part by faulting as shown by the offset of VR data (also A. Carr pers. comm.). Unfortunately, this cannot be modelled without affecting the rest of the model or falsely giving the oldest sediments in this basin a greater age in order to allow sufficient time for these sediments to mature and model the deeper burial of these sediments. It should be noted that due to this, the model indicates that the Bowland Shale only reaches the oil window in this bo
	though the sediments below the fault do reach the gas window (Figure 3c). 

	The high VR values suggest great quantities of sediment were deposited in the Carboniferous and eroded during the Variscan Orogeny. Near Manchester, over 2.5 km of Coal Measures and Warwickshire Group sediments are recorded. In this model, an additional 3 km of Carboniferous sediments were This additional thickness may partly be a result of the lower heat flow modelled at this location. 
	included in order to fit the data (Figure 3a). 

	Permian and Triassic sediments are preserved onshore with 600 m of Permian sediments and over 200 m of Triassic Sherwood Sandstone and Mercia Mudstone sediments. The model fits the data when these layers are included as eroded sediments along with a further 3.1 km of deposition during the late Permian to Cretaceous, which was then eroded during the final period of uplift. There is more uncertainty on this final amount of deposition as the model is less sensitive to this layer, however, in order to fit these
	Figure
	Figure 3. Thistleton model, 3a (top) shows the depositional history, 3b (centre) shows the modelled palaeo-heat flow and 3c (bottom) shows the modelled VR maturity and VR data. 
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	4.2.2 Hesketh 1 
	Thistleton 1 borehole model. The heat flow is subject to the same cautionary note that it may have been higher during Carboniferous rifting and that the thickness of deposited sediment may therefore have been overestimated. However, despite uncertainty in the model, the VR data do indicate that the Bowland Shale reached the oil generation window in this borehole. 
	As only 3 VR data points are available for this borehole (Figure 4), this model relies heavily on the nearby 

	In this case, it was estimated that 1500 m of Namurian and 2500 m of Westphalian – Stephanian sediments were deposited during the Carboniferous then eroded from the basin during the Variscan Orogeny. The Bowland Shale reached model temperatures of 120°C and depths of burial of almost 5 km, pushing these sediments into the oil generation window. Following uplift and erosion during the Variscan Orogeny, around 660 m of Permo-Triassic sediments are penetrated by the borehole. The model includes a further 3.9 k
	The heat flow for this model was based on the Thistleton model as there are only three VR data points and so the slope of the model is not well constrained outside of this small window. 

	The model indicates that the Bowland Shale Formation reached the oil generation window during the Carboniferous. 
	The model indicates that the Bowland Shale Formation reached the oil generation window during the Carboniferous. 
	4.2.3 2-D section 
	shows the current sediment thicknesses across the basin as interpreted from seismic data. These are shown as coloured polygons, dashed lines show missing thicknesses of strata. A reasonable fit to the sediment implied by the models in order to achieve the maturity recorded by the VR data for the Hesketh and Thistleton boreholes in the Bowland Basin. It should be noted that as the lithologies used for the 2-D section are averaged for each formation and as such, the models are less detailed that the 1D versio
	Figure 5 and Figure 6 show the 2-D model which was generated using the 1-D models as a basis. 
	Figure 5 
	maturity data was achieved (Figure 6 and Figure 8) and this section shows the great thickness of eroded 
	-

	This indicates that most of the Bowland-Hodder unit is currently in the gas generation window (VR 1.1 – 3.5%). It should be noted that the deepest part of the Irish Sea Basin is uncontrolled by VR data and so the maturity model here is unconstrained. This area appears to have undergone rapid syn-depositional faulting so the maturity may in fact be underestimated here since eroded sediment thicknesses were estimated based on nearby boreholes but no VR data were available for this project in order to verify t
	The present day gas window is shown in Figure 7. 

	Figure
	Figure 4. Hesketh model, 4a (top) shows the depositional history, 4b (centre) shows the modelled palaeoheat flow and 4c (bottom) shows the modelled VR maturity and VR data. 
	-
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	Figure
	Figure 5. East Irish Sea/Craven Basin 2-D model. Grey is Mercia Mudstone Group, violet is Sherwood Sandstone Group, Dark blue is Manchester Marl, pale green is Westphalian, orange is Millstone Grit, pink is the Bowland-Hodder unit. The dark green unconformity is the current land surface, the red unconformity is the Variscan Unconformity. Dashed lines show eroded thicknesses of strata (the thickness between the unconformity/underlying eroded layer and the dashed line represents the eroded thickness). The bot
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	Figure
	Figure 6. Irish Sea and Craven Basin maturity based on the model is indicated by colour across the whole basin, for comparison, the ovals show the measured VR data at the wells. 
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	Figure
	Figure 7. Present day gas window in the Irish Sea and Craven Basin 2-D model 
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	Figure
	Figure 8. Maturity at well locations across the Irish Sea – Craven Basin 2-D section. The pink line shows model maturity, black crosses show VR data 
	5. Cheshire Basin section 
	5.1 Cheshire Basin geology 
	During most the Devonian, the Cheshire Basin was a region of erosion. Crustal extension began in the late Devonian and continued through the Visean. During the Early Visean, shallow marine deposition occurred in the north of the Cheshire Basin. Subsidence continued into the Late Visean, during which the whole Cheshire Basin region underwent marine deposition with a deeper marine environment prevailing in the north of the region. This was followed by uplift during early Namurian times when the south of the C
	The Cheshire Basin is a half-graben formed as one of a series of sedimentary basins during Permo-Triassic rifting. The Permo-Triassic infill of this basin may have been up to four or five kilometres thick prior to geologically recent erosion. The basin is flanked to the east and west by Carboniferous and older rocks. The succession in this region displays widespread uplift and erosion resulting from the Variscan Orogeny (Plant et al. 1999). 
	5.1.1 Upholland 1 
	The palaeo-heat flow from a previously modelled borehole (Keele 1) was used as a basis for the heat flow for Upholland 1 as the vitrinite reflectance dataset is more complete (Vincent & Merriman 2002). Pearson & Russell (2000) provided VR data for Westphalian A to Pendleian age strata from the Upholland borehole. Stratigraphical data from Plant et al. (1999) were used to model the eroded stratigraphy. The VR data were then used to calibrate the model and the heat flow history was assumed to follow a similar
	model maturity curve and maturity data points in the Carboniferous coals of Upholland 1 (Figure 9c). 

	The Upholland 1-D model indicates approximately 800 m of sediment was removed during the Variscan Plant et al. (1999). Permo-Triassic cover was calculated to be around 900 m, with a further 500 m deposited during the Jurassic and Cretaceous. The heat flow and temperatures reached are slightly lower than in the centre of the Cheshire Basin; this model shows heat flow of up to 73mWmduring the early Carboniferous, with temperatures of around 120°C in the Westphalian A coals, and slightly lower These results ar
	uplift and 50 m during the Hardegsen event (Figure 9a), which agrees with thicknesses estimated in 
	-2 
	temperatures achieved on reaching a depth of about 2 km during the Cretaceous (Figure 9a and b). 
	Figure 9c indicates that the Coal Measures 

	5.1.2 Ince Marshes 1 
	Ince Marshes 1 lies between Knutsford 1 and Blacon East 1 in terms of proximity to the depocentre of the Cheshire Basin. The model achieved a reasonable fit to the data with an estimated 190 m additional Carboniferous strata added then eroded during the Variscan Orogeny and over 1 km of Permian – Triassic strata and 500 m of Jurassic to Cretaceous strata added then eroded during the Hardegsen and Palaeocene – Recent erosion. Model Based on this model, the Upper Bowland Shale reached temperatures following a
	 It penetrates the Upper Bowland Shale (Figure 10a).
	heat flow is shown in Figure 10b. 
	over 100°C during Carboniferous burial, and 120°C during deeper Cretaceous burial (Figure 10a), 
	Upper Bowland Shale reached the oil generation window (Figure 10c) from the Carboniferous onwards. 

	Figure
	Figure 9. Upholland 1 model, 9a (top) shows the depositional history, 9b (centre) shows the modelled palaeo-heat flow and 9c (bottom) shows the modelled VR maturity and VR data. 
	P
	Figure

	Figure 10. Ince Marshes 1 model, 10a (top) shows the depositional history, 10b (centre) shows the modelled palaeo-heat flow and 10c (bottom) shows the modelled VR maturity and VR data. 
	5.1.3 Knutsford 1 
	Limited vitrinite reflectance data are available in Pearson & Russell (2000) for the Knutsford 1 borehole. Porosity data from Plant et al. (1999) was also used. Borehole temperature data is also available in Burley et al. (1984). Lewis et al. (1992) provided AFTA data from the Westphalian, Permian and Triassic. Following the findings in Plant et al. (1999), fluid circulation in the basin was included in the model, using the '2-D fluid flow' and 'delta heat' options in BasinMod. ‘2-D fluid flow’ assumes flui
	Upholland 1, with highest temperatures achieved during the Cretaceous. The model implies removal of approximately 500 m of Carboniferous sediment during Variscan uplift, with deposition recommencing  An estimated 50 m of overburden was also removed during the Hardegsen event. The model palaeo-heat flow peaked at 78 mWmduring the late Carboniferous Westphalian and 160°C during Cretaceous/Palaeogene burial. Model calculations imply that late Cretaceous burial beneath 2.8 km of Permo-Triassic strata, with a fu
	The Knutsford 1-D model (Figure 11a) shows a different burial history from that of Keele 1 and 
	with the Sherwood Sandstone (Figure 11a).
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	(Figure 11b), with the Westphalian C coals reaching temperatures of around 60°C during the 
	Figure 11c indicates that the Coal Measures reached the oil generation window during the 

	5.1.4 Blacon East 1 
	Blacon East 1 is located away from the main Cheshire Basin depocentre and Permo-Triassic sediment thicknesses are therefore thinner than at Knutsford 1. Eroded sediment thicknesses were estimated using Plant et al. (1999). 
	Limited VR data were available for Blacon East 1. The model implies removal of c.600 m of Carboniferous sediment during Variscan uplift, with deposition recommencing with the Sherwood  An estimated 50 m of overburden was also removed during the Hardegsen event. The model palaeo-heat flow peaked at 78 mWmwith the deepest Bowland Shale sediments achieving temperatures of 160°C. Model calculations imply that late Cretaceous burial beneath 220 m of Permo-Triassic strata, with a further 200 m of Triassic, Jurass
	Sandstone (Figure 12a).
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	during the late Carboniferous (Figure 12b), 
	Figure 12c indicates that the Bowland Shale reached the gas generation window 

	Figure
	Figure 11. Knutford model, 11a (top) shows the depositional history, 11b (centre) shows the modelled palaeo-heat flow and 11c (bottom) shows the modelled VR maturity and VR data. 
	Figure 11. Knutford model, 11a (top) shows the depositional history, 11b (centre) shows the modelled palaeo-heat flow and 11c (bottom) shows the modelled VR maturity and VR data. 
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	Figure
	Figure 12. Blacon East 1 model, 12a (top) shows the depositional history, 12b (centre) shows the modelled palaeo-heat flow and 12c (bottom) shows the modelled VR maturity and VR data. 
	Figure 12. Blacon East 1 model, 12a (top) shows the depositional history, 12b (centre) shows the modelled palaeo-heat flow and 12c (bottom) shows the modelled VR maturity and VR data. 


	APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 
	Figure
	Figure 13. Cheshire Basin 2-D model. Grey is Mercia Mudstone Group, blue is Sherwood Sandstone Group and Permian, green is Westphalian, orange is Millstone Grit, pink is the Bowland-Hodder unit. The green unconformity is the current land surface, the red unconformity is the Variscan Unconformity. Dashed lines show eroded thicknesses of strata (the thickness between the unconformity/underlying eroded layer and the dashed line represents the eroded thickness). The base of the model is top Chadian. 
	Figure 13. Cheshire Basin 2-D model. Grey is Mercia Mudstone Group, blue is Sherwood Sandstone Group and Permian, green is Westphalian, orange is Millstone Grit, pink is the Bowland-Hodder unit. The green unconformity is the current land surface, the red unconformity is the Variscan Unconformity. Dashed lines show eroded thicknesses of strata (the thickness between the unconformity/underlying eroded layer and the dashed line represents the eroded thickness). The base of the model is top Chadian. 
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	Figure
	Figure 14. Maturity based on the model is indicated by colour across the whole basin, for comparison, the ovals show the VR data at the wells. 
	Figure 14. Maturity based on the model is indicated by colour across the whole basin, for comparison, the ovals show the VR data at the wells. 


	47 
	APPENDICES TO ‘THE CARBONIFEROUS BOWLAND SHALE GAS REPORT: GEOLOGY AND RESOURCE ESTIMATION’ 
	Figure
	Figure 15. Present day gas window for the Cheshire Basin 2-D section 
	Figure 15. Present day gas window for the Cheshire Basin 2-D section 
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	Figure
	Figure 16. Maturity from the Cheshire Basin 2-D model at the borehole locations across the basin. The pink line shows the model maturity, the black crosses show the VR data 
	Figure 16. Maturity from the Cheshire Basin 2-D model at the borehole locations across the basin. The pink line shows the model maturity, the black crosses show the VR data 


	5.1.5 2-D section 
	Figure 13 and Figure 14 show the 2-D model which was generated for the Cheshire Basin section using the 1-D models as a basis. 
	Figure 13 shows the current sediment thicknesses across the basin as interpreted from seismic data. A good match to the data was obtained (Figure 14 and Figure 16) given the limitations on entering eroded thicknesses as described in section 2; i.e. that the eroded Carboniferous thickness has been added to the eroded thickness of sediment removed by the latest erosion and the time for the start of this combined erosion was given as the end Carboniferous (Figure 13). The model indicates that much of the Bowla
	6. Widmerpool Gulf – Gainsborough Trough 
	6.1 Widmerpool Gulf geology 
	The Bowland Shale is thick in this region, with over 2 km predicted by seismic interpretation (Pharaoh et al. 2011). In North Staffordshire, the Millstone Grit shows rhythmic deposition in a deltaic environment and has a recorded thickness of around 1055 m in boreholes in the Widmerpool Gulf. Deposition began in the Marsdenian in South Staffordshire and Widmerpool Gulf became a depocentre for Millstone Grit during the Marsdenian. To the north of the region, the Millstone Grit was more argillaceous. Westphal
	In this region, the total estimated thickness of the Sherwood Sandstone Group (SSG) varies widely and reaches a maximum thickness in the Cheshire Basin of around 2621 m (Plant et al. 1999). Between 30 – 152 m of overlying Mercia Mudstone Group (MMG) has been recorded and around 15 m of Rhaetic sediments occur near East Leake. Jurassic sediments 352 – 527 m thick have been recorded in boreholes and outcrops in this region (Nottinghamshire and the Midlands; Hains & Horton 1969). 
	In Derbyshire, there are volcanic rocks of Brigantian age and Tertiary intrusions are recorded in Cheshire and Shropshire (Hains & Horton 1969). 
	Figure
	Figure 17. Gun Hill model, 17a (top) shows the depositional history, 17b (centre) shows the modelled palaeo-heat flow and 17c (bottom) shows the modelled VR maturity and VR data. 
	Figure 17. Gun Hill model, 17a (top) shows the depositional history, 17b (centre) shows the modelled palaeo-heat flow and 17c (bottom) shows the modelled VR maturity and VR data. 
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	6.1.1 Gun Hill 1 
	The Gun Hill 1 borehole shows rapid deposition of thick Carboniferous sequences, with the oldest  The model implies removal of approximately 1320 m of Carboniferous sediment during Variscan uplift.  The model palaeo-heat flow peaked at 70 mWm Model calculations imply that late Cretaceous burial beneath 180 m of Permo-Triassic strata, with a further 600 m of Jurassic and Cretaceous strata resulted in temperatures of 120°C in the Bowland Shale. 
	Bowland Shale reaching temperatures of 160°C (Figure 17a).
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	during the late Carboniferous (Figure 17b).

	The VR data indicate that the Bowland Shale reached the gas generation window. Erosion occurred during the Triassic (Hardegsen) and Palaeocene -Recent times exposing Millstone Grit at the surface. The model indicates that the Bowland Shale reached the gas generation window during the 
	Carboniferous (Figure 17c). 

	The fit of the model to the data may also be influenced by the Gun Hill lava, as the additional heat would have affected the VR readings of layers immediately underneath.recorded immediately underneath the lava flow. 
	 In Figure 17c, a high VR reading is 

	6.1.2 Long Eaton 1 
	The Long Eaton 1 borehole shows Triassic sediments deposited unconformably on the Widmerpool and Long Eaton Formations of Asbian to Chadian age (Craven Group). These sediments reached maximum  The model was constructed with an estimated additional 890 m of Carboniferous sediments removed during erosion associated with the Variscan Orogeny. This was followed by deposition of around 170 m of Permo-Triassic and 340 m of Jurassic – Cretaceous. As there are very few VR data, the heat flow profile from nearby Gun
	depths of burial of around 3 km (Figure 18a) according to the model.

	and the fact that this borehole is located in the depocentre of the Widmerpool Gulf, it seems likely that these eroded sediment thicknesses are rather underestimated and confidence in the results of this 1-D model is low. 
	Given the lack of VR data for this borehole (8 VR data within a very narrow depth range, see Figure 18c) 

	6.1.3 Ilkeston 1 
	The Ilkeston 1 borehole penetrates sediments of Westphalian A and Namurian (Yeadonian –  The model implies that an estimated 600 m of Carboniferous strata were removed during Variscan uplift and erosion. This was followed by deposition of Permo-Triassic sediments, with a modelled thickness of 540 m and Jurassic – Cretaceous sediments with a modelled thickness of 510 m. Limited VR data were available for Ilkeston 1 and the heat flow from Gun Hill 1 formed the basis for this model. The model implies the deepe
	Arnsbergian) age (Figure 19a).
	temperatures of 120°C during Carboniferous burial (Figure 19a). 
	Figure 19c indicates that the Bowland 

	Very few VR data are available, so this model should be used with caution; however, the depth of burial seems reasonable for the location (near to the margin of the Widmerpool Trough). It should also be noted that the VR readings are taken from sediments below a fault shown on the borehole log and the data may not give an accurate indication of maturity for this borehole if the rocks have been significantly displaced in depth. 
	Figure
	Figure 18. Long Eaton model, 18a (top) shows the depositional history, 18b (centre) shows the modelled palaeo-heat flow and 18c (bottom) shows the modelled VR maturity and VR data. 
	Figure 18. Long Eaton model, 18a (top) shows the depositional history, 18b (centre) shows the modelled palaeo-heat flow and 18c (bottom) shows the modelled VR maturity and VR data. 
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	Figure
	Figure 19. Ilkeston model, 19a (top) shows the depositional history, 19b (centre) shows the modelled palaeo-heat flow and 19c (bottom) shows the modelled VR maturity and VR data. 
	Figure 19. Ilkeston model, 19a (top) shows the depositional history, 19b (centre) shows the modelled palaeo-heat flow and 19c (bottom) shows the modelled VR maturity and VR data. 


	6.2 Gainsborough Trough geology 
	The Bowland Shale was deposited in shallowing marine condition, with deep marine conditions during the early Visean and shallow marine conditions during the late Visean. This was followed by deposition of shallow marine/deltaic sediments during the Namurian and Westphalian. Following uplift during the Variscan Orogeny, this region again subsided through the Permian to become fully marine during the Jurassic and Cretaceous. Recent uplift has exposed Permian and Carboniferous rocks in this region. 
	Recorded thicknesses of Coal Measures are up to 2200 m and the Warwickshire Group reaches thicknesses of up to 140 m east of the Pennine High. Permian sediments in this region are around 88 – 158 m thick, Triassic Sherwood Sandstone Group sediments are around 400 m thick and Mercia Mudstone Group sediments are up to 190 m thick (Aitkenhead et al. 2002). 
	Volcanic activity occurred to the south during latest Namurian times. 
	The Grove 3 borehole has a heat flow of 54 mWm(Downing & Gray 1986), however, other boreholes in this trough such as Ranby 1 and Scaftworth B2 have higher present day heat flows (75 to 83 mWm) (Downing & Gray 1986). 
	-2 
	-2

	Overall, the VR data for the Gainsborough Trough are not as satisfactory as for the other regions modelled for this report. There are very limited data for Grove 3 and the data for Gainsborough 2 and Kirk Smeaton 1 show a broad scatter. Thus confidence in the models is lower than for models previously described. However, it should be noted that a significant number of the VR data for Kirk Smeaton 1 and the VR data for Grove 3 are all in the gas generation window. 
	6.2.1 Grove 3 
	Grove 3 penetrates sediments of Permo-Triassic age resting unconformably on sediments of  The oldest sediments are Bowland Shales of Courceyan age and the well terminated in Early Palaeozoic phyllites. The model implies deposition and subsequent removal of 900 m of Carboniferous sediment. The deepest Bowland Shale sediments reached temperatures of over 180°C during Carboniferous burial and again during Cretaceous burial. Over 350 m of Permian sediments are recorded in the borehole. An estimated eroded thick
	Westphalian C age (Figure 20a).

	It should be noted that only 1 VR data point was available, so confidence in this model is low and much of the heat flow model was based on Gainsborough 2 and Kirk Smeaton 1 which have more complete VR 
	datasets (Figure 20c). 

	Figure
	Figure 20. Grove 3 model, 20a (top) shows the depositional history, 20b (centre) shows the modelled palaeo-heat flow and 20c (bottom) shows the modelled VR maturity and VR data. 
	Figure 20. Grove 3 model, 20a (top) shows the depositional history, 20b (centre) shows the modelled palaeo-heat flow and 20c (bottom) shows the modelled VR maturity and VR data. 


	Figure
	Figure 21. Gainsborough 2 model, 21a (top) shows the depositional history, 21b (centre) shows the modelled palaeo-heat flow and 21c (bottom) shows the modelled VR maturity and VR data. 
	Figure 21. Gainsborough 2 model, 21a (top) shows the depositional history, 21b (centre) shows the modelled palaeo-heat flow and 21c (bottom) shows the modelled VR maturity and VR data. 


	6.2.2 Gainsborough 2 
	The Gainsborough 2 borehole penetrates through Permian sediments to the Upper Bowland Shale  Thirty nine VR data were available and the model fit is reasonable, though there is a broad scatter on the data. 
	(Figure 21a).

	The model heat flow is quite low, having a heat flow of around 70 mWmduring the late Carboniferous The Upper Bowland Shale reached the oil generation window during Carboniferous burial. An estimated 110 m of Carboniferous sediment was removed during uplift during the Variscan Orogeny. Deposition during the Permian – Cretaceous was quite thin in comparison with other wells in this area; only 515 m is proven in the borehole and a modelled additional 85 m of Permian – Cretaceous sediments eroded by the Hardegs
	-2 
	(Figure 21b).
	 The deepest Bowland Shale sediments reached temperatures of over 100°C (Figure 21a). 
	-

	6.2.3 Kirk Smeaton 1 
	Kirk Smeaton 1 lies on a northern basin bounding fault on the Gainsborough Trough. The modelled heat flow is quite low having a heat flow of around 65 mWmduring the late Carboniferous. The model indicates that the Lower Bowland Shale reached temperatures of 120°C during Carboniferous burial and  An estimated 1 km of sediment was removed during the Variscan Orogeny. A small remnant of Permian Collyhurst Sandstone is present in the borehole. The removed thicknesses of the Permo-Triassic and Jurassic – Cretace
	-2 
	140ºC during Cretaceous burial (Figure 22a).
	 The model fit is reasonable (Figure 22c) and the low heat flow and thin sediments are 

	6.2.4 2-D section 
	 A  This section clearly shows the impact of the modelled eroded sediments on the maturity of the basins. The deepest parts of the basin have gone  Note that the reverse fault near Eakring has been included as a normal fault in order to model the sediments as BasinMod 2-D cannot include Also, where the Variscan erosional surface has been removed, most the eroded thickness of Carboniferous sediments has been added to the thickness removed by the most recent erosion. 
	Figure 23 and Figure 24 show the 2-D model which was generated using the 1-D models as a basis. 
	Figure 23 shows the current sediment thicknesses across the basin as interpreted from seismic data.
	good fit to the VR data was achieved (Figure 24 and Figure 26).
	through the gas window and are now over-mature (Figure 25).
	repeated layers in vertical section (Figure 23). 

	Figure
	Figure 22. Kirk Smeaton model, 22a (top) shows the depositional history, 22b (centre) shows the modelled palaeo-heat flow and 22c (bottom) shows the modelled VR maturity and VR data. 
	Figure 22. Kirk Smeaton model, 22a (top) shows the depositional history, 22b (centre) shows the modelled palaeo-heat flow and 22c (bottom) shows the modelled VR maturity and VR data. 
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	Figure
	Figure 23. 2-D section across the Widmerpool Gulf and Gainsborough Trough. Grey is MMG, blue is SSG and Permian, green is Westphalian, orange is Millstone Grit, pink is the Bowland-Hodder unit. The green unconformity is the current land surface, the red unconformity is the Variscan Unconformity. Dashed lines show eroded thicknesses of strata (the thickness between the unconformity/underlying eroded layer and the dashed line represents the eroded thickness). The bottom of the model is Top Chadian. 
	Figure 23. 2-D section across the Widmerpool Gulf and Gainsborough Trough. Grey is MMG, blue is SSG and Permian, green is Westphalian, orange is Millstone Grit, pink is the Bowland-Hodder unit. The green unconformity is the current land surface, the red unconformity is the Variscan Unconformity. Dashed lines show eroded thicknesses of strata (the thickness between the unconformity/underlying eroded layer and the dashed line represents the eroded thickness). The bottom of the model is Top Chadian. 
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	Figure
	Figure 24. Maturity for the Widmerpool Trough – Gainsborough Trough 2-D section, the continuous colour shows the maturity based on the model, for comparison, the ovals show the measured VR data at the wells. 
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	Figure
	Figure 25. Present day gas window for the Widmerpool Trough -Gainsborough Trough 2-D section model. 
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	62 
	Figure
	Figure 26. Maturity model at borehole locations across the Widmerpool Trough -Gainsborough Trough 2-D section. Pink line shows the modelled maturity, black crosses show VR data. 
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